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Abstract—Covert eavesdropping via microphones has always
been a major threat to user privacy. Benefiting from the acoustic
non-linearity property, the ultrasonic microphone jammer (UMJ)
is effective in resisting this long-standing attack. However, prior
UMJ researches underestimate adversary’s attacking capability
in reality and miss critical metrics for a thorough evaluation. The
strong assumptions of adversary unable to retrieve information
under low word recognition rate, and adversary’s weak denoising
abilities in the threat model make these works overlook the
vulnerability of existing UMJs. As a result, their UMJs’ resilience
is overestimated. In this paper, we refine the adversary model
and completely investigate potential eavesdropping threats. Cor-
respondingly, we define a total of 12 metrics that are necessary for
evaluating UMJs’ resilience. Using these metrics, we propose a
comprehensive framework to quantify UMJs’ practical resilience.
It fully covers three perspectives that prior works ignored in
some degree, i.e., ambient information, semantic comprehension,
and collaborative recognition. Guided by this framework, we can
thoroughly and quantitatively evaluate the resilience of existing
UMJs towards eavesdroppers. Our extensive assessment results
reveal that most existing UMJs are vulnerable to sophisticated
adverse approaches. We further outline the key factors influenc-
ing jammers’ performance and present constructive suggestions
for UMJs’ future designs.

I. INTRODUCTION

Eavesdropping or recording via microphones has always
been a serious privacy threat. Nowadays, ubiquitous smart
devices, such as smartphones and voice assistants (VA), are
reported to eavesdrop on private speeches and pass recordings
along to third-party [1]–[3], which exacerbates this threat.

To combat microphone-enabled eavesdropping, researchers
proposed the ultrasonic microphone jammers (UMJs) [4]–[9].
Compared with the conventional electromagnetic and audible
jammers [10], UMJs are promising in anti-eavesdropping with-
out prior knowledge about the target devices nor audible dis-
turbances by utilizing the inherent non-linearity of amplifiers
inside a microphone [11], [12]. With this property, ultrasounds
that are imperceptible to human ears over the air, would leak
energy into the audible spectrum when arriving microphones
[13]. This noise migrates from ultrasonic bands would drown
out the human voice in spy microphones’ recordings. Recent
advances in this field have enabled more practical designs on
the UMJ over off-the-shelf devices [4]–[7].

However, existing UMJs underestimate the adversary’s ca-
pability of retrieving meaningful information from noise-
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ruined sounds, and hence their jamming effect has been over-
estimated. For example, a primer design of MicShield, a repre-
sentative UMJ, was reported to be vulnerable to beamforming-
based eavesdropping attack (with 75.0% jammed fragments
recovered and recognized by adversaries) [6]. Other noise
elimination methods are also effective in jamming reduction
in practice according to our experiments in Sec. V-C. Hence,
a more practical adversarial model should take the noise
elimination as a fundamental attacking ability.

Besides the above overlooked capabilities, in the security
assumption of prior works, the considered eavesdropping
surface is too narrow in existing literatures. The adversary
was assumed to recognize individual words from the recording
by either human’s perception or automatic speech recognizers
(ASRs). Therefore, they usually leverage a defective evaluation
method that mainly focuses on a single metric, i.e., the
word recognition rate. Once the word recognition rate cannot
exceed a pre-defined threshold, the UMJ is regarded as secure.
However, non-verbal sounds and unrecognizable words also
leak privacy. For instance, such an attack could position a
victim’s house via an unrecognizable eavesdropped audio [1].
The adversary infer the victim’s region by the victim’s accent
and deduces that a fuzzy word ‘Strxxt Sevxx, Waxsmxxsxxx’
(‘x’ represents an unrecognizable syllable) was ‘Street Seven,
Waasmunster’, which revealed the victim’s detailed location.

With the above observation in mind, we explore and sum-
marize realistic threats from sophisticated adversaries into
three perspectives, including ambient information, semantic
comprehension, and collaborative recognition. First, even if an
UMJ is powerful to guarantee that no verbal information would
be recognized, the adversary might concentrate on the non-
verbal or ambient information. For example, the background
sound may expose the victim’s location to the adversary.
Second, the adversary can semantically comprehend the mean-
ing of speech even though some parts of the recording are
unrecognizable. This is because that humans can compensate
for lost information in fragmented recordings by guessing
or inferring, even if these speeches are of inferior quality.
Lastly, the collaboration between multiple ASRs and humans
on recognition is overlooked. There are many ASRs in the
market, such as Google speech to text (STT) [14], CMU
Sphinx [15], and iFLYTEK [16], acute to distinct words.
Although their recognition results are variant due to different
intrinsic models and algorithms [17], a smart adversary can
integrate their results [17] to recover more information, even



if individual ASRs perform ineffectively. In addition, human’s
perception can further promote the recognition accuracy. With
such man-machine collaboration, the adversary can maximize
the recognition rate of victims’ private speeches.

To comprehensively evaluate UMJs’ resilience to realistic
adversaries, we comprehensively investigate the threats from
the above three perspectives. We also refine the eavesdropping
model by complementing the adversary with a practical de-
noising ability. Correspondingly, we propose a comprehensive
evaluation framework that leverages 12 metrics to cover the
above attacking surfaces. As for ambient information, we em-
ploy three intensity metrics [18], [19] to cover both the verbal
and non-verbal factors. As for semantic comprehension, we
adopt six intelligibility metrics [20]–[25] to weigh how much
adversaries could understand from the jammed recordings
quantitatively. As for collaborative recognition, we define new
metrics, which reflect UMJs’ defensive effectiveness against
adversarial man-machine collaboration. We weigh these met-
rics to compare UMJs on customers’ convenience.

Guided by this framework, we quantify the defensive effec-
tiveness of four representative UMJs [4]–[7]. Astonishingly,
our assessment reveals that existing UMJs are often defeated
under realistic eavesdropping. Moreover, to trigger effective
countermeasures, we determine the key impact factors based
on a comparative analysis and present several constructive
suggestions for future UMJ designs.

Our contributions are summarized as follows:
• We propose a comprehensive framework for evaluating

UMJs’ defence effectiveness. Involving 12 metrics, it covers
potential threats as much as possible in real eavesdropping
attacks, enabling a thorough evaluation on UMJs.

• We refine the adversary model of eavesdropping attacks to
appraise UMJ’s resilience objectively. We perform a detailed
analysis of existing UMJs. The model and analysis support
quantifiable evaluation on the vulnerabilities of existing
UMJs against sophisticated adversaries in real-world sce-
narios.

• We outline the key factors influencing UMJs’ performance
and summarize constructive suggestions for the improve-
ment and future design of UMJs based on our comparative
analysis. We also release our source code [26] to facilitate
the anti-eavesdropping research.

II. BACKGROUND

A. Principle of UMJs

An UMJ leverages microphone non-linearity [7] for jam-
ming, where the inner amplifier exhibits square-law nonlinear
characteristics [11], [13], especially when the input frequency
is above 25 kHz. Hence, some high-frequency signals are de-
modulated to low-frequency signals intentionally. Concretely,
suppose an audio input x(t), and the output y(t) becomes

y(t) = A1x(t) +A2x
2(t), (1)

where Ai is the gain coefficient of the i-th harmonic compo-
nent xi(t). Here, higher-order harmonics (i ≥ 3) are ignored
due to their low energy [27].

TABLE I
THE COMMON CATEGORIES OF JAMMING SIGNALS

An UMJ consists of several ultrasonic transducers supplied
by a signal generator. In the simplest case, it exploits a pair
of tones. The input of microphone x(t) is

x(t) = cos(2πfct) +m(t), (2)

where m(t) is the jamming signal modulated on the ultrasonic
carrier cos(2πfct), and fc is the carrier frequency, higher
than 25 kHz typically. A constant-frequency signal m(t) =
cos[2π(fc+fb)t], for example, introduces the second harmonic
after an amplifier as following,

y(t) = A2 +A2cos(2πfbt) + others, (3)

where fb is a bias frequency and others represents high-
frequency items that are removed by a low-pass filter. After-
wards, the low-frequency component A2

2 cos(2πfbt) remains.
The low-frequency residue will be recorded by the micro-
phone, making the private speech unrecognizable by virtue
of the masking properties [28]. With the aforementioned
properties, the UMJs induce the modulated ultrasonic signals
to inject the arranged noise into a spy microphone.

B. Classification of Jamming Signals
The essential differences among UMJs [4]–[7] lay in the

categories of their jamming signal m(t), which directly impact
the UMJ’s ability to shield voice bands. To perform an in-depth
evaluation, it is necessary to classify existing UMJs according
to their jamming signals, as listed in Table. I.

Tone signal. The previous example, m(t) = cos[2π(fc +
fb)t], is a typical tone signal. Furthermore, an UMJ can
employ multiple tone signals, that is,

m(t) =
∑

j cos[2π(fc + fj)t], (4)

where fc is the carrier frequency, j (j ≥ 1) is the number of
tone signals, and fj is their frequency biases.

Dynamic single frequency noise (DSFN). The hop fre-
quency signal [4], [5] is a representative. It scrambles dis-
cretely and randomly at a predetermined interval as following,

m(t) = cos[2π(f0 + a[⌊ t
p
⌋])t], (5)

where f0 is the sum of the carrier frequency fc and a bias fb, p
is the period between hopping, a[·] is a random sequence with
a maximum value fn, and ⌊·⌋ is the rounding down function.



White Gaussian noise (WGN). Some approaches [6], [7]
recommend WGN for jamming, whose energy is distributed
over a broad ultrasonic spectrum. We have

m(t) = gwn(f0, f0 + fw), (6)

where gwn(·) is the Gaussian noise with a bandwidth fw.
We categorize the representative UMJs [4]–[7] according to

the above standards. The systems we evaluated in this paper
are all based on these representative prototypes.

III. THREAT ANALYSIS

We refine the adversary model to reveal realistic threats that
UMJs confront. It comprehensively analyzes the capabilities
of a sophisticated but practical adversary.

A. Threat Model

We follow the well-known STRIDE threat model [29] to
refine the threat model. Here, the information disclosure model
[29] fits best and we have the following definitions:

Victims: Victims are the target devices or users to be
bugged. They are protected by UMJs. Spy devices are located
within the effect range of UMJs.

Adversary’s capability: An adversary can plant one or
more spy microphones in the vicinity of victims, or gain the
microphone access of a smartphone or a VA. He can deploy
spy devices at suitable places for articulate and complete
recordings. Even if illegal recordings are awash with jamming
noise, he would recover and extract the private information
by the means including but not limited to those detailed in
Sec. III-B. Furthermore, he may detect the existence of UMJs
and perform anti-jamming treatments, such as choosing micro-
phone deployment positions for noise elimination methods.

Winning condition: It is defined as the moment when the
adversary successfully extracts the private information from
jammed recordings. He would result in three-fold threats (See
Sec. III-C) using various methods (See Sec. III-B).

B. Noise Elimination Methods

Different from the assumption that an adversary would give
up once jammed [4], [7], we point out that he would endeavor
for noise elimination and information extraction. We consider
two noise elimination algorithms, i.e., blind source separation
(BSS) [30] and filtering within the adversary’s capability.

1) BSS: BSS is a practical algorithm without any prior
knowledge about noise. It is particularly adopted for speech
separation and extraction. It profits from the mutual indepen-
dence of the source signals but demands that the number of
independent observers N is not less than the number of sources
M . Thanks to multiple observations provided by multiple
microphones, this dimension requirement is easy to fulfill.

2) Filtering: Filtering requires basic knowledge of noise
characteristics, such as frequency distribution. Unfortunately,
the adversary could analyze and conclude necessary infor-
mation from jammed recordings easily with the aid of ad-
vanced spectrum analysis, such as short-time Fourier transform
(STFT) or discrete wavelet transformation (DWT).

Bandstop Filter (BSF) is a preferred candidate for noise
elimination. It is observed that the jamming noise has a
prominent intensity. Accordingly, a notch filter (NF) or a
wideband bandstop filter (WBSF) is exploited to filter out
the frequency point or band with the maximum energy. Fur-
thermore, we exploit the coupling of ultrasound for a real-
time noise distributions analysis. Therefore, the adversary can
conduct an adaptive notch filter (ANF) for noise elimination.
Specifically, an ultrasonic tone at the frequency f1 can couple
with jamming signals and introduce a low-frequency compo-
nent at the frequency |f1 − fc|. This component can imply
the frequency distribution of jamming noise [31]. With such
a reference, the adversary could use ANF for anti-jamming.

In practice, adversaries may utilize multiple techniques
concurrently. Besides the above methods, sophisticated noise
reduction methods including traditional statistic-based [32]
and advanced learning-based ones [33] are also popular.
Unfortunately, results in Sec. V-C demonstrate that existing
UMJs [4]–[7] are extremely vulnerable to the above-mentioned
methods, let alone other sophisticated techniques.

C. Three-perspective Architecture on Eavesdropping Threats

We organize eavesdropping threats using a three-perspective
architecture. It involves the perspectives of ambient informa-
tion, semantic comprehension, and collaborative recognition.

Ambient information remaining in jammed recordings still
exposes user privacy. In practice, a spy microphone collects
speeches as well as acoustic contexts in the environment.
Although the UMJ could guarantee that no verbal information
would be recognized through the illegal recordings, the ad-
versary might extract non-verbal information from a polluted
recording for privacy theft. For example, in Fig. 1(a), the
adversary can surmise that the victim is in an office if the spy
microphone captures noise emitted from printers. He could
further draw the victim’s daily routine.

The adversary can semantically comprehend the meaning
of speech from partly-unrecognizable conversations. This is
because adversaries can exploit conjectures or semantic knowl-
edge to successfully understand some low-quality speeches.
For instance, the adversary in Fig. 1(b) determines that the
fuzzy fragment ‘Hexxx, worxx!’ (the character ‘x’ represents
an unrecognizable syllable) is ‘Hello, world!’. Thus, unrecog-
nizable words still risk the leakage of private information.

An adversary can pursue clear and accurate recognition of
the victims’ speech with the collaboration of ASRs and human
labors, as shown in Fig. 1(c). Although speech recognition has
been extensively studied in previous works [4]–[7], the collab-
oration between multiple ASRs and humans on recognition is
overlooked. Utilizing different intrinsic models, current ASRs
[14]–[16] are acute to distinct words and generate different
recognition results [17]. Moreover, human recognition further
promotes accuracy. With a man-machine collaboration, the
adversary can maximize the acquired privacy.

The adversary might utilize noise elimination techniques
including the ones in Sec. III-B to exacerbate eavesdropping
threats. On account of such a three-perspective architecture,
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Fig. 1. Three-perspective architecture completely containing potential eavesdropping threats, consisting of ambient information, semantic comprehension, and
collaborative recognition. Correspondingly, we propose an evaluation framework on UMJs’ resilience, comprised of 12 metrics from these perspectives.

a comprehensive framework should concern all the above
perspectives to evaluate UMJs.

IV. EVALUATION FRAMEWORK

We design a comprehensive framework to assess UMJs. As
listed in Fig. 1, it embodies 12 metrics from three perspectives:
intensity, intelligibility, and collaborative recognition rate.

A. Intensity

Previous evaluations based on speech recognition serve no
purpose in inferring the environment, leaving a flaw of privacy
leakage. Hence, a thorough assessment of UMJs ought to
consider both the verbal and non-verbal factors. We leverage
the intensity metrics [18], [19] to describe these factors. We
adopt the Signal to Noise Ratio (SNR) and its derivatives to
assess UMJs against ambient information leakage.

SNR is a widely used metric to measure the impact of noise.
Here, we employ it and its derivatives for describing the in-
tensity of jamming noise. SNR serves as a predefined standard
to guarantee impartial assessment. Segmental SNR (SNRseg)
[18] and frequency-weighted segmental SNR (fwSNR) [19]
jointly embody the jamming intensity in short segments. In
our experiment, all sounds except jamming noise are treated
as signal so as to include background sounds.

We merge them into one intensity score SSNR,

SSNR = wSNR · [SNR SNRseg fwSNR]T , (7)

where wSNR is a 3-dimensional weight vector. The three
intensity metrics are normalized by the theoretical or experi-
mental maximum and minimum values respectively following
a linear conversion function. This matrix is set as [0.34 0.22
0.44] based on their correlations with subjective ratings of
signal quality [34]. Intensity metrics are incorporated in our
framework to evaluate the UMJs’ effectiveness in concealing
the ambient information from eavesdropping. A higher SSNR

means a better jamming effect in terms of jamming intensity.

B. Intelligibility

Semantic comprehension should be painstakingly consid-
ered for evaluating the UMJs’ defensive effectiveness. Besides

recognizing individual words directly, an adversary may de-
duce information from jammed recordings via semantic com-
prehension. To quantify the information leakage, we project
human comprehension into intelligibility [20]–[25]. It can
be described by measuring audio distortions [25], [34]. We
employ six metrics to represent three kinds of distortions.
They weigh how much adversaries could understand from the
jammed recordings quantitatively.

The distortion between received signals and raw speeches
comprises a propagation distortion component, an additive
noise component, and an algorithmic artifacts component [35].
We utilize the following metrics to cover all distortions and
evaluate the intelligibility of speeches comprehensively.

The propagation distortion component could be depicted
by the spectral envelope difference. We utilize two basic
measurements i.e. weighted spectral slope (WSS) [20] and
log-likelihood ratio (LLR) [21] for description. WSS is the
weighted difference between the spectral slopes in each fre-
quency band and LLR is the likelihood ratio of features in
time domain. Since WSS and LRR are negatively correlated
with intelligibility, we supersede them by their opposite here.
The additive noise component is described by normalized
covariance measure (NCM) [22] and coherence and speech
intelligibility index (CSII) [23]. NCM is the weighted sum
of normalized covariance signals in each frequency band.
CSII is calculated by using coherence as features in the
frequency domain. The algorithmic artifacts component is
quantitatively described by perceptual evaluation of speech
quality (PESQ) [24] and Short-time objective intelligibility
(STOI) [25]. PESQ estimates the overall loudness difference
between the noise-free and processed signals, which assesses
the speech distortion introduced by artifact algorithms [36].
STOI is designed for measuring speeches processed by noise
reduction and speech separation algorithms.

We normalize and integrate the above indexes into an
intelligibility score SIn as follows,

SIn = wIn·[WSS LLRNCM CSII PESQ STOI]T , (8)

where wIn is a 6-dimensional weight vector. In general, wIn

is set as [0.06 0.13 0.20 0.21 0.18 0.22] based on their



correlations with subjective ratings of speech intelligibility
[25], [34]. We quantify the intelligibility of audio and score
UMJs using these metrics. A higher SIn suggests that the
UMJs can make illegal recordings barely comprehensible.

C. Collaborative Recognition Rate

Existing literatures [4]–[7] take the speech recognition by
ASRs (ARR) or by human perception (HRR) into considera-
tion. However, it is improper to separate human and machine.
They neglect their collaboration on speech recognition.

We define the collaborative recognition rate (CRR). It
reflects the real threats on illegal speech recognition. CRR
represents the rate of clear words the adversary can recognize
by jointly using multiple ASRs or human perception. CRR is
twofold, subsuming ARR and HRR as follows,

ARR =
card(RASR)

card(S)
=

card(
⋃n

i=1 RASRi
)

card(S)
,

HRR =
card(RH)

card(S)
=

card(
⋃m

j=1 RHj
)

card(S)
,

CRR =
card(R)

card(S)
=

RASR ∪RH

card(S)
,

(9)

where card(·) is the number of elements in a set, RASRi

is recognized by the i-th ASR, RHj is recognized by the j-
th volunteer, RASR and RH are words recognized by ASR
and volunteers respectively, R is comprised of all words
recognized, and all of them are the subsets of S, a set of
the whole speeches to be identified. We design a recognition
score SCRR as follows,

SCRR = 1− CRR. (10)

It is positively correlated to the resilience of UMJs against such
a man-machine collaborative attack. SCRR can display the
security of UMJs against eavesdroppers in speech recognition.

D. Resilience Evaluation for UMJs

We weigh the above metrics for the convenience of ignorant
consumers. They can directly compare UMJs’ scores,

Stotal = W · [SSNR SIn SCRR]
T , (11)

where W is a 3-dimensional weight vector. A higher Stotal

implies better performance and robustness against eavesdrop-
ping and noise elimination methods.

We utilize principal component analysis (PCA) [37] to
determine the weight coefficients W based on the preference
of customers. We design a questionnaire to randomly collect
the concern of potential customers using Likert-type scale [38],
where they score the threat level in each layer by judging
several descriptions. In 851 issued questionnaires, 732 partic-
ipants are willing to use an UMJ and provide their preference
on the defence effect toward potential adversaries. With the
survey result, we determine W = [0.3337 0.3609 0.3053] as
the weights in Stotal to evaluate the resilience of UMJs.

Fig. 2. Experimental setup.

V. EVALUATION

Under the guidance of the above framework, we analyze
the defensive effectiveness of representative UMJs thoroughly
and reveal their vulnerabilities against an adversary.

A. Experiment Setup

We perform extensive experiments on existing UMJs under
identical test conditions, as shown in Fig. 2.

UMJ Hardware. We use two kinds of transducers in an
UMJ: nine sets of NU40A14TR-1 [39] play the jamming
signal m(t) while nine sets of NU40C16TR-1 [39] generate a
40 kHz ultrasonic carrier. Jamming signals depend on each
UMJ. These transmitter arrays are put on a bracket and
connected with a signal generator SIGLENT SDG1020 [40].

Recording Devices. We use three kinds of recording devices
as spy microphones, i.e., a Samsung Galaxy S8, a Pixel 4, an
iPhone 6s, an iPad Pro 2020, and two Thinkpad x201 laptops.
The average score of an UMJ on these six devices is regarded
as its final score.

Position. A JBL 750T speaker plays the test audios and a
spy microphone is 5 cm away in a quiet laboratory. The UMJ
is placed next to the speaker. There is no obstacle to the line-
of-sight. The spy microphone records the mixture of the raw
test audios and jamming noise.

Power. The power of the raw audio is set as 65dB-SPL
(dB of sound pressure level), which is the common average
loudness of social conversations [7]. The power of jamming
signals is set as 115dB-SPL. Because of the intrinsic hard-
ware error, the measured values are 65.1dB-SPL (raw audio),
114.5dB-SPL (DSFN jamming signals [4], [5]), and 105.1dB-
SPL (WGN signals [6], [7]). Correspondingly, SNRs retain
about -49.4dB [4], [5] or -40dB [6], [7].

Test Audios. We play 11000 items of audio segments in
total, derived from AudioMNIST [41] and Librispeech [42],
including common words [7] (accounting for 94%), letters
(4%), and digits (2%). The audios are randomly allocated
among volunteers. In the experiment, volunteers are allowed
to replay the audio until they are able to recognize or give up.

We set an adversary’s practical capability as following.
Recognizers. We employ three ASRs and recruit 20 vol-

unteers for the man-machine collaborative recognition on the
jammed recordings. (1) ASRs: We exploit STT provided by
Google STT [14], CMU Sphinx [15], and iFLYTEK [16].
The speech recognition ratios of these ASRs are claimed
to exceed 80% on the raw audios [14]–[16]. (2) Humans:
We randomly recruit 20 volunteers aged between 18 and
45 without any knowledge of specific selecting strategies



TABLE II
FOUR REPRESENTATIVE UMJS AND THEIR OVERALL PERFORMANCES

Representative UMJ Produced Noise Category Without Noise Elimination With Noise Elimination

Stotal SSNR SIn SCRR Stotal SSNR SIn SCRR

Wearable Jammer [4] [0,1] kHz DSFN hopping per 0.45 ms 0.88 0.82 0.84 1.00 0.60 0.54 0.72 0.51
Patronus [5] [85,255] Hz DSFN hopping per 0.2 s 0.75 0.82 0.54 0.93 0.24 0.16 0.45 0.07

MicShiled [6] 4 kHz bandwidth WGN 0.89 0.82 0.85 1.00 0.60 0.56 0.73 0.51
Backdoor [7] 8 kHz bandwidth WGN 0.89 0.85 0.85 1.00 0.58 0.46 0.67 0.61

Fig. 3. Performance of four representative UMJs and their vulnerability to adversarial noise elimination.

to avoid biased impacts, whereas participants cannot bear
hearing impairments and are able to recognize simple words
or paragraphs. Our experiments on volunteers are validated
through an institutional review (IRB).

Noise Elimination. To judge the security of these rep-
resentative UMJs against realistic adverse approaches, we
implement four noise elimination methods as mentioned in
Sec. III-B. We utilize (a) BSS with the fast independent cost
analysis [43], (b) a STFT-based NF, (c) a WBSF of 2 kHz
cut-off frequency, and (d) an ANF with the normalized least
mean square (NLMS) algorithm [44].

B. Representative UMJs

We replicate four representative UMJs [4]–[7] under the
aforementioned conditions (See Tab. II). Wearable Jammer [4]
and Patronus [5] utilize the DSFN signals for jamming, while
MicShield [6] exploits WGN. Specifically, Wearable Jammer
issues the hop frequency signal altering randomly among [0,1]
kHz for every 0.45 ms and modulated by a high-frequency
carrier. Patronus uses chirps to smooth the frequency hopping.
It produces a noise that changes frequency among [85,255]
Hz for every 0.2 s. MicShield employs WGN with a 4 kHz
bandwidth modulated on a 40 kHz carrier. Backdoor [7]
tried four kinds of jamming signals and claimed WGN is
most useful. Hence, we set WGN of 8 kHz bandwidth as its
jamming signals. These four representative UMJs own their
unique designs in hardware platform arrangement and energy
supply in previous works [4]–[9]. However, we set these
parameters to the same for a fair evaluation. The influences of
these designs are discussed in Sec. VII.

As shown in Fig. 3(c), these UMJs seem to protect the
test audios from being recognized by the adversary. They
maintain the low ARR and HRR, which tally with their
claims about performance. Even in consideration of the man-
machine collaboration, they obtain high SCRRs. Patronus gets
the lowest score by 0.93, while the others nearly reach 1. They
seem adequate for effective acoustic privacy protection.

C. Performance and Vulnerability
Based on the proposed framework, we reexamine UMJs’

defensive effectiveness against the eavesdropping threats. Fig.
3 presents the scores of these UMJs without noise elimination
and their average scores suffering from the denoising means.

1) Overall Performance: Tab. II illustrates the overall per-
formance of these four representative UMJs. The higher score
in this table implies better resilience against eavesdropping
threats. Results without noise elimination demonstrate that
MicShield owns the best defensive effectiveness with Stotal of
0.89, followed by Backdoor, Wearable Jammer, and Patronus
in turn. However, these UMJs are vulnerable against the
realistic adversary. From the comparison in Tab. II, their
performances decrease by 41.8% on average after the noise
elimination. MicShield, the most secure one, maintains a
low score of only 0.6, which is still unavailing in face of
the sophistication. Patronus scores merely 0.24. It proves
barely resilient against arbitrary technique of adversarial noise
elimination. Following parts will detail their vulnerability from
each perspectives.

2) Intensity: As shown in Fig. 3(a), these UMJs share simi-
lar performance in terms of intensity without noise elimination,
with SSNRs of around 0.82. We observe that the contribution
of each metric is unique. Wearable Jammer and Patronus gain
the high SNR and SNRseg. Their bandwidths do not exceed 2
kHz. By contrast, MicShield and Backdoor use the broadband
noise that contributes to the incline of fwSNR due to the
complexity in the frequency domain. The effect of jamming
signals’ bandwidth is further compared in Sec. V-D2.

After the adversarial noise elimination, there are obvious
reductions in each intensity metric. MicShield dominates
among these four UMJs, possibly because of its complexity in
frequency domain. Nonetheless, its SNR increases profoundly
from -49.4dB to -29.33dB, followed by Wearable Jammer
(-22.45dB), Backdoor (-19.20dB), and Patronus (-5.16dB).
Results indicate that most energy of jamming noise can be
removed by the adversarial noise reduction.



3) Intelligibility: We present the performance of these
UMJs on each intelligibility metric, with radar charts in Fig.
3(b). Vividly, the smallest area indicates the worst performance
of Patronus with the intelligibility score of 0.54, while others
score around 0.85. Although the SCRR of Patronus is just
0.07 less than others in Fig. 3(c), the difference between their
SIns is high up to 0.31. A slight drop from the perspective
of recognition will seriously enervate the defensive effective-
ness against the threat of semantic comprehension. This has
strengthened our arguments to consider intelligibility metrics.

After noise elimination, SIns present a significant erosion,
with a decrease of over 0.24. Their rank of SIns is MicShield,
Wearable Jammer, Backdoor, and Patronus. Though the former
three UMJs earn the seemingly similar assessment in terms
of recognition, they receive diverse scores here. This demon-
strates that intelligibility does not depend absolutely on the
speech recognition rate. Human comprehension is significant
or even dominant at this state.

4) Collaborative Recognition Rate: Even in terms of
speech recognition, all UMJs fail to resist adversarial noise
eliminations. This means the adversary can recover most of
the speech content. In Fig. 3(c), their performance decreases
significantly. All ARRs outweigh 20% and all HRRs are above
35%. Backdoor seems to be the most resilient with its SCRR

just over 0.6, while Patronus performs worst again. It obscures
merely 6.75% words, offering extremely less protection to
users’ speech privacy. In detail, its ARR, HRR, and CRR are
34.15%, 92.80%, and 93.25% respectively.

Furthermore, we analyze the influence of ASRs and vol-
unteers on recognition. There is no doubt that an excellent
ASR can increase the recognition rate in terms of ARR.
Fig. 4(a) illustrates that iFLYTEK is conspicuous for its
efficiency, followed by Google STT, which can also offer some
supplements. On the other hand, HRR depends on the ability
and the number of volunteers. It seems to be uncontrolled
and unpredictable. Fortunately, the difference in recognition
is not statistically significant among humans. The cumulative
average HRR curve as the incremental volunteers is plotted
in Fig. 4(b). CRR reaches a high level and scarcely increases
after the number of volunteers overtakes five. Nevertheless,
there are still several words unrecognizable for humans but
can be recognized by ASRs. This emphasizes that it is signif-
icant to take account of man-machine collaboration in speech
recognition in the comprehension evaluation framework. We
further ease the requirement. With the aid of iFLYTEK or
Google STT, three volunteers are competent to measure the
resilience of an UMJ from the perspective of man-machine
collaborative recognition.

Accordingly, we provide experienced manufacturers and av-
erage customers with different requirements. The experienced
manufacturers should pay close attention to each metric for
the improvement of UMJs. Furthermore, manufacturers are
obligated to assess their products based on a rich supply
of experimental data and provide their Stotals to show the
defend effectiveness quantitatively. By comparing the Stotals
of different UMJs, the average customers can choose the

appropriate UMJs. As for the average customers, we offer the
low-cost measurement requirements to check the resilience of
an UMJ. Experimentally, an audio consisting of at least 300
words represents adequate test audios with similar results and
short test time. The average customer can access it via open
source databases, or they can test on the voice captured by
themselves. In particular, the measurement of CRR involves
several recognizers. We recommend the collaboration of one
ASR and at least three human recognizers.

Briefly speaking, the existing UMJs are vulnerable against
the realistic adversary. There will be a formidable task ahead
of the UMJ designers. They should elaborate more ingenious
jamming signals and cope with intractable adverse approaches
in defence of private speeches.

D. Impact of Signal Categories and Parameters

We analyze the impact of each parameter. It explains the
striking different performances among existing UMJs with
different signal categories and parameters. We conclude the
key factors and provide a reference for the further UMJ design.

We introduce the fuzzy entropy (FsEn) [45], a widely used
measurement of the disorder degree. We use it to compare the
complexity of jamming signals from a statistical point of view.
After necessary preprocessing [46], we have

FsEn(m, r) = lnΦm(r)− lnΦm+1(r), (12)

where Φ is the mean of the degree matrix of membership on
top of the elements in the principal diagonal, m is the window
length, and r is a parameter, generally set as the quotient of
m divided by the standard deviation of the data [46].

1) The Category of Jamming Signals : We design three
prototypes of UMJs utilizing different jamming signal. Apart
from hop frequency signals and WGN signals in Sec II-B, we
introduce the sweep frequency signals, another representative
of DFSN signals. It repeats a linear continuous chirp regularly.
We test on these three kinds of signals. The periods of the two
DSFN signals are 1ms and all test jamming signals share the
identical bandwidth (2 kHz). As illustrated in Fig. 6(a), no
significant correlations between FsEn and the performance of
different signal categories are found. The hop frequency signal
has the best performance before the noise removal, probably
thanks to its randomness in the frequency domain. WGN
obtains the lowest score. Energy dispersion of broadband
may be to blame for this. Nevertheless, it becomes dominant
after the adversarial noise elimination. Residual noise among
broadband conversely improves UMJs’ resilience.

2) Bandwidth: We further compare the influence of jam-
ming signals’ bandwidth. Taking WGN signals as example,
we select five bandwidths, increasing from 500 Hz to 8 kHz
with an equivalent ratio. As illustrated in Fig. 6(b), the FsEn
is positively correlated with bandwidth of jamming signals.
Meanwhile, the SCRR increases with the bandwidth until 4
kHz, but there is a slight drop at 8 kHz. A bandwidth of 4
kHz is the best alternative for WGN signals. Jamming signals
with the wider band are able to conceal more information in
the audible band. However, an excessively wide-band signal
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disperses the noise energy, possibly leading to poor perfor-
mance. In addition, the wide bandwidth demands transducers
of an excellent frequency response. Otherwise, there is an
unexpected energy loss. Such hardware limitations may be the
chief cause of the drop at 8 kHz in Fig. 6(b) as well as the
vulnerability of Backdoor.

3) The Number of Jamming Signals: Recalling Formula. 4,
the number of jamming signals is a key parameter. We test
on the tone signals with four frequencies within 2 kHz. Fig.
6(c) illustrates that the FsEn multiplies with the increase of
jamming signals and the multi-source UMJ behaves better. In-
spired by this, an effective way for performance enhancements
lies in multiple simultaneous jamming signals.

In brief, a high FsEn brings about better defensive effec-
tiveness, accordant with the trend in Fig. 6(b)(c). FsEn can
serve as the baseline for the selection of parameters. Note that
it cannot be used to compare the UMJs with different signal
categories. Besides, it is unwise to increase complexity blindly
considering the performance degradation at 8 kHz in Fig. 6(b).

E. Impact of Implementation

The condition of the implementation plays a role in the
defensive performance of an UMJ, including position, power
supply, carrier frequency, and hardware platforms.

1) Distance and orientation: The ultrasound is extremely
sensitive to position due to its directionality. Therefore, investi-
gating the effectiveness of UMJs under different distances and
orientations is necessary to the optimization of the layout. We
rotate the spy microphone around the fixed UMJs at different
distances in simulation. The average Stotal among UMJs
using representative signal categories [4]–[7] is distributed,
as illustrated in Fig. 5(a). These UMJs just work at a narrow
angle within 75cm. They get high marks on the UMJs’ central
axis but show a sharp decrease downstream. An UMJ appears
sensitive to the orientation and far from robust to the position
of the spy microphones. It is an attractive option to arrange

multiple UMJs around the sound source for effective and
omni-directional jamming coverage [4], but it is still unable
to cope with noise elimination methods from adversaries.

2) Power supply: Power seals the upper limit of a UMJ’s
performance. The higher power will directly increase the
jamming intensity. Taking Patronus as an example, its SNR is
set to change from -40dB to -60dB at the interval of -5dB. Its
performance on CRR without and with each noise elimination
technique is shown in Fig. 5(b). It seems more effective
along with power supply, but appears observably vulnerable
to adversarial noise eliminations. Specifically, CRRs tend to
significantly increase against BSS, NF, and ANF with the peak
of 94.4%, even SNR is set to -60dB. The UMJ’s resilience
improves slightly as SNR decreases, but with an actual decline
of CRR by just 0.5 percent against BSS. By contrast, CRR
against WBSF holds the line at a low level in spite of
the increasing noise power (a decreasing SNR). Briefly, the
increase of power is positive to the resilience of an UMJ, but
the improvement is extremely limited.

3) Carrier frequencies: Different kinds of spy microphones
vary in non-linearity frequency response. They show di-
verse performances jammed by noise of different frequency.
Therefore, the selection of carrier frequencies might result
in jamming performance changes. We reduplicate Wearable
Jammer [4] with carrier frequencies ranging from 25 to 40
kHz at an interval of 1 kHz. Its average scores on multiple
microphones fluctuate within [0.72, 0.8]. Nevertheless, after
noise elimination, its Stotals always drop to 0.58. Such re-
sults reflect that the adjustment of carrier frequencies affect
UMJs’ effectiveness but benefits barely the resilience again
adversarial noise elimination methods.

4) Unique platforms of existing UMJs: Previous works
adopted several strategies about actual hardware/system de-
sign for performance improvements. Wearable Jammer [4]
uses a 3D circular array design to increase spatial coverage.
Patronus [5] includes a reflection layer to increase coverage.



MicShield [6] employs a 2D planar circular array. In essence,
these measures merely arrange the noise energy distribution
with a significant SNR negative gain somewhere. However,
conclusions in Sec. V-E2 stress that the SNR decrease barely
benefits the resilience of UMJs. We duplicate these original
proposals and repeat experiments in Sec. V-C. They remain
vulnerable to adversaries with an average Stotal of about 0.45.
In addition, MicShield [6] requires the frequent listening of
users’ speeches. The risk of privacy leakage is just transferred
from voice assistants to their system.

VI. SUGGESTIONS ON PROSPECTIVE DESIGNS

We summarize some suggestions on the subsequent design
of a resilient UMJ for future reference.

Multi-source jamming. Multiple jamming signals can be
involved simultaneously with the deployment of multiple low-
cost transducers. This increases jamming noise’ complexity as
elaborated in Sec. V-D3 and expands the jamming coverage.
Particularly, it requires more spy microphones and higher cost
to benefit UMJs’ resilience against BSS.

Appropriate Bandwidth. The superior performance of 4-
kHz-bandwidth jamming signals in Fig. 6(b) demonstrates
the importance of the bandwidth. An appropriate bandwidth
implies high efficiency in privacy protection. Moreover, UMJs
can dynamically strategize about energy allocation and band-
width according to the distribution of protected speeches. In
addition, A rapid frequency alternation benefits the complexity
of jamming signals statistically and UMJ’s performance.

Coherent noise. Existing UMJs employ noise that is inde-
pendent of speeches. This benefits the most aggressive BBS
that is shown in Fig. 5(b). Jamming noises are removed by
an adversary without difficulty. Conversely, coherent noises
can couple with speeches. They will be more indistinguishable
from speeches, along with the promotion of resilience.

In short, the prospective UMJ design tends towards com-
plexity, dynamism, and coherence. Particularly, we suggest
a series of independent broadband noises. These noises are
coupling with speeches to be protected, with the dynamic
energy distribution among the appropriate bandwidth.

VII. DISCUSSION

Microphones difference. Recent advances have proved
that UMJs transmitting ultrasounds with frequencies between
25kHz and 50kHz can jam off-the-shelf recording devices [4]–
[7], [47]. We have discussed the effect of carrier frequencies
in Sec. V-E3. However, we find that some recording devices,
e.g., a Yescool A7 recorder, have no non-linearity in the
band between 25 kHz and 40 kHz. Fortunately, a jamming
signal with a higher frequency, i.e., over 60kHz, can touch
off their non-linearity. Thus, UMJs should leverage multiple
carriers covering a wide frequency band. This guarantees
UMJs’ effectiveness against spy devices with different non-
linearity responses but increases the energy consumption.

Jamming coverage. Although UMJs have limited distances
and narrow angle (See Sec. V-E1), the jamming coverage

can be promoted utilizing a higher power supply and mul-
tiple transmitters. The specific platforms as well promote
it. However, as analyzed in Sec. V-E, such settings expand
the jamming coverage but cannot benefit resilience against
adversarial noise elimination methods.

Scalability. Except for UMJs, there are some other kinds of
microphone jammers with unknown performances [10], [48].
Fortunately, our framework can be adapted for the evaluation
on these jammers utilizing noise to pollute eavesdropped
recordings, because our framework is only correlated to the
eavesdropper’s ability to extract privacy from noisy recordings,
regardless of how to add noise on the recordings. Hence, the
framework can provide a comprehensive evaluation on existing
microphone jammers and raise concern over speech privacy.

VIII. RELATED WORK

Microphone Jammers. Typically, there are three categories
of jammers to combat this covert microphone-based eaves-
dropping: the electromagnetic, audible, and UMJ. Electromag-
netic jammers [10] require prior knowledge about the target
devices. Noisy signals from audible jammers [48] can be
heard by users. As a comparison, UMJs overcome the above
shortcomings and are promising in anti-recording [4]–[9].

Acoustic Non-linearity. A microphone exhibits square-
law nonlinear characteristics [11], [13]. DolphinAttack [27]
initially accomplishes inaudible command injection on VAs.
Effective attacks are proposed further to expand the coverage
[49], [50]. He et al. [31] present an active inaudible-voice-
command cancellation as a defence. In contrast, Backdoor [7]
leverages this property for anti-eavesdropping. Researches on
its prospect are conducted, such as wearable implementation
[4], jamming coverage [8], [9], and selective jamming [5], [6].

IX. CONCLUSION

We design a comprehensive evaluation framework toward
the resilience of UMJs. It contains 12 metrics from per-
spectives of intensity, intelligibility, and collaborative recogni-
tion rate, in correspondence with the potential eavesdropping
threats in real-world scenarios. Guided by the framework, we
assess representative UMJs and reflect their vulnerabilities.
We analyze the key parameters on UMJs’ performances and
propose suggestions for further designs. Our framework can
act as a stepping-stone for thorough speech privacy protection.
We have provided public access to our code [26].
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[17] V. Këpuska and G. Bohouta, “Comparing speech recognition systems
(microsoft api, google api and cmu sphinx),” Int. J. Eng. Res. Appl,
vol. 7, no. 03, pp. 20–24, 2017.

[18] J. H. L. Hansen and B. L. Pellom, “An effective quality evaluation pro-
tocol for speech enhancement algorithms,” in International Conference
on Spoken Language Processing, 1998.

[19] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 16, no. 1, pp. 229–238, 2008.

[20] D. Klatt, “Prediction of perceived phonetic distance from critical-band
spectra: A first step,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1982.

[21] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements, Objective
measures of speech quality. Prentice Hall, 1988.

[22] R. L. Goldsworthy and J. E. Greenberg, “Analysis of speech-based
speech transmission index methods with implications for nonlinear
operations,” The Journal of the Acoustical Society of America, vol. 116,
no. 6, pp. 3679–3689, 2004.

[23] J. M. Kates and K. H. Arehart, “Coherence and the speech intelligibility
index,” The journal of the acoustical society of America, vol. 117, no. 4,
pp. 2224–2237, 2005.

[24] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2001.

[25] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted noisy
speech,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2010.

[26] EchoZju, “Big-brother,” https://zenodo.org/badge/latestdoi/304488420,
2022.

[27] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack:
Inaudible voice commands,” in ACM conference on computer and
communications security, 2017.

[28] M. R. Schroeder, B. S. Atal, and J. L. Hall, “Optimizing digital speech
coders by exploiting masking properties of the human ear,” The Journal
of the Acoustical Society of America, vol. 66, pp. 1647–1652, 1979.

[29] L. Kohnfelder and P. Garg, “The threats to our products,” Microsoft
Corporation 33, 1999.

[30] S. Makino, T.-W. Lee, S. S. Makino, and H. Sawada, Blind speech
separation, 1st ed. Dordrecht: Springer Netherlands, 2007.

[31] Y. He, J. Bian, X. Tong, Z. Qian, W. Zhu, X. Tian, and X. Wang,
“Canceling inaudible voice commands against voice control systems,” in
International Conference on Mobile Computing and Networking, 2019.

[32] M. Wu and D. Wang, “A two-stage algorithm for one-microphone
reverberant speech enhancement,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 3, pp. 774–784, 2006.

[33] A. Pandey and D. Wang, “A new framework for cnn-based speech
enhancement in the time domain,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 27, no. 7, pp. 1179–1188, 2019.

[34] J. Ma, Y. Hu, and P. C. Loizou, “Objective measures for predicting
speech intelligibility in noisy conditions based on new band-importance
functions,” The Journal of the Acoustical Society of America, vol. 125,
no. 5, pp. 3387–3405, 2009.

[35] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[36] Y. Hu and P. C. Loizou, “A comparative intelligibility study of single-
microphone noise reduction algorithms,” The Journal of the Acoustical
Society of America, vol. 122, no. 3, pp. 1777–1786, 2007.

[37] K. P. F.R.S., “On lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[38] S. G. M. and A. R. A. Jr., “Analyzing and interpreting data from likert-
type scales,” Journal of graduate medical education, p. 541, 2013.

[39] Jinci Technologies, “Product review,” http://www.jinci.cn/
en/goods/112.html, 2021.

[40] SIGLENT Technologies, “Sdg1000 series function/arbitrary waveform
generators,” https://www.siglenteu.com/waveform-generators/, 2021.

[41] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek,
“Interpreting and explaining deep neural networks for classification of
audio signals,” arXiv preprint arXiv:1807.03418, 2018.

[42] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
asr corpus based on public domain audio books,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2015.

[43] J. Herault and C. Jutten, “Space or time adaptive signal processing by
neural models,” in AIP Netural Networks for Computing, 1987.

[44] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
Wiley, 1996.

[45] W. Chen, J. Zhuang, W. Yu, and Z. Wang, “Measuring complexity using
fuzzyen, apen, and sampen,” Medical Engineering & Physics, vol. 31,
no. 1, pp. 61–68, 2009.

[46] W. Chen, Z. Wang, H. Xie, and W. Yu, “Characterization of surface emg
signal based on fuzzy entropy,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 15, no. 2, pp. 266–272, 2007.

[47] G. Zhang, X. Ji, X. Li, G. Qu, and W. Xu, “Eararray: Defending
against dolphinattack via acoustic attenuation,” in Annual Network and
Distributed System Security Symposium, 2021.

[48] Oeler Industries, “Sound masking device,” https://www.oeler.com/sound-
masking-systems/, 2021.

[49] N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury, “Inaudible voice
commands: The long-range attack and defense,” in USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[50] L. Song and P. Mittal, “Poster: Inaudible voice commands,” in ACM
conference on computer and communications security, 2017.


	Introduction
	Background
	Principle of UMJs
	Classification of Jamming Signals

	Threat Analysis
	Threat Model
	Noise Elimination Methods
	BSS
	Filtering

	Three-perspective Architecture on Eavesdropping Threats

	Evaluation Framework
	Intensity
	Intelligibility
	Collaborative Recognition Rate
	Resilience Evaluation for UMJs

	Evaluation
	Experiment Setup
	Representative UMJs
	Performance and Vulnerability
	Overall Performance
	Intensity
	Intelligibility
	Collaborative Recognition Rate

	Impact of Signal Categories and Parameters
	The Category of Jamming Signals 
	Bandwidth
	The Number of Jamming Signals

	Impact of Implementation
	Distance and orientation
	Power supply
	Carrier frequencies
	Unique platforms of existing UMJs


	Suggestions on Prospective Designs
	Discussion
	Related Work
	Conclusion
	References

