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ABSTRACT
With the advance in automatic speech recognition, voice user inter-
face has gained popularity recently. Since the COVID-19 pandemic,
VUI is increasingly preferred in online communication due to its
non-contact. Additionally, various ambient noise impedes the pub-
lic applications of voice user interfaces due to the requirement of
audio-only speech recognition methods for a high signal-to-noise
ratio. In this paper, we present Wavoice, the first noise-resistant
multi-modal speech recognition system that fuses two distinct voice
sensing modalities, i.e., millimeter-wave (mmWave) signals and au-
dio signals from a microphone, together. One key contribution
is that we model the inherent correlation between mmWave and
audio signals. Based on it, Wavoice facilitates the real-time noise-
resistant voice activity detection and user targeting from multiple
speakers. Furthermore, we elaborate on two novel modules into the
neural attention mechanism for multi-modal signals fusion, and
result in accurate speech recognition. Extensive experiments verify
Wavoice’s effectiveness under various conditions with the charac-
ter recognition error rate below 1% in a range of 7 meters. Wavoice
outperforms existing audio-only speech recognition methods with
lower character error rate and word error rate. The evaluation in
complex scenes validates the robustness of Wavoice.
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1 INTRODUCTION
Voice user interface (VUI) plays an essential role in intelligent
scenes, e.g. smart homes [41]. It provides a hands-free and eyes-
free human-machine interaction between humans and Internet of
Things devices. Benefiting from the development of deep learning
and natural language process, the automatic speech recognition
(ASR) entitles VUI to the capacity of accurate comprehension on
users’ intentions [77]. With such a convenient and flexible service,
users can interact with various devices as they please. Commercial
VUI products have gained in popularity over recent years, such
as smart speakers (e.g., Amazon Echo [4] and Google Home [17]),
voice assistants in smartphones (e.g. Siri [25]), and in-vehicle voice
control interactions (e.g. VUIs in Tesla Model S/X/3/Y [58]). An-
alysts forecast that by 2024, the deployment of VUI-based smart
speakers will reach 640 million globally [70].

Nowadays, VUI tends to branch out into the smart city busi-
ness [19]. Non-contact interaction, represented by VUI, has been
widely deployed in public places [67]. It gradually replaces tradi-
tional contact interaction such as button or touch interactions [44].
Especially due to the corona virus disease-19 (COVID-19) pandemic
[26], people avoid physical contact with public facilities for safety
reasons. For example, VUIs have been exploited for voice-controlled
elevators [55] and ATMs [71]. Different from home scenes, VUI
needs to address more multifarious ambient noise (e.g. traffic noise,
commercial noise, and nearby voices) in public places (e.g. streets,
stations, halls, or parties). However, audio-based ASR techniques
based on microphone arrays, including traditional statistic-based
[21, 72] and advanced learning-based [46, 76], require clear audio
signals with a high signal-to-noise ratio (SNR). Hence in public
applications, audio signals, drowned in the unpredictable noise,
become difficult to identify. Additionally, to protect themselves
from the corona virus, people prefer to wear respiratory protective
face masks [42], which further degrades acoustic quality and en-
cumbers speech recognition accuracy [42]. Audio-only methods
are incompetent to support VUI in these cases.

To address these difficulties above, researchers exploit multi-
sensor information fusion for speech enhancement and recognition.

https://doi.org/10.1145/3485730.3485945
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Figure 1: An application scenario for Wavoice in the case of
smart city. Users can interact with a Wavoice-powered smart
streetlight that provides services including location, naviga-
tion, emergency calling, and voice-controlled traffic lights.

Audio-visual methods [1, 43] integrate lip motion captured by cam-
eras with noisy voices, but are limited by lighting conditions, line-
of-sight requirement, or face masks. Ultrasound-assisted speech
enhancement techniques [30, 56] are merely applied into condi-
tional scenes on account of the extremely short working distance
(within 20cm) and specific postural requirements.

We turn attention to millimeter wave (mmWave) radars, and
leverage it as a supplementary for speech recognition. It has been
demonstrated that mmWave signals contribute to voice informa-
tion recovery with excellent performance on resistance to ambient
noise and penetration [35, 75]. Those signals can detect the vo-
cal vibration by analyzing reflected signals of remote target users
even wearing face masks in a noisy environment. Nevertheless,
mmWave radars do not always perform satisfactorily. Due to the
tinywavelength (about 4mm), mmWave signals are sensitive to both
vocal vibration and motion. They would be affected by users’ body
movement in practice. To make matters worse, mmWave radars are
likely to shake in specific scenarios, e.g. vehicle applications. Motion
interference, ignored by prior work [75], would distort reflected
signals that contain vocal information of users. mmWave-based ap-
plications always suffer from such motion interference from users,
radars, or both. Fortunately, microphone-based voice collection can
compensate for the loss of information to some extent. Therefore,
we consider the complementary collaboration between a mmWave
radar and a microphone. These two signals of different modalities
are employed together for accurate speech recognition. Here, the
mmWave signal encourages noise-resistant speech sensing in spite
of face masks, while the audio signal collected by a microphone
serves as a guide to calibrate speech features in the mmWave signal
under motion interference.

To realize the multi-modal system that combines mmWave and
audio signals for speech recognition in complex scenes, multiple
practical challenges need to be addressed. (1) How to fuse signals
of different modalities to support long-distance VUI applications,
while mmWave and audio signals may suffer from noise. (2) How
to detect voice activity in an effective and real-time manner, when
user’s voice is probable to be overlapped by multiple noises. (3) How
to apply this ASR system in a multi-person scene, where irrelevant
conversation may disturb users’ voice commands.

We propose Wavoice, a multi-modal speech recognition system
for public VUI applications, as illustrated in Figure 1. It exploits

a mmWave radar for detecting users’ vocal vibration in noisy en-
vironments, and a microphone in case of the motion interference.
Moreover, it is able to penetrate through face masks for speech
information extraction. To combine their advantages, we investi-
gate the inherent correlation between mmWave and audio signals.
For practical application, we design real-time and anti-interference
voice activity detection and user targeting methods based on the
frequency-dependent property between these multi-modal signals.
Furthermore, we introduce two novel modules into the neural at-
tention mechanism for the ASR-oriented multi-modal fusion. One
module exchanges valid features for mutual recalibration and char-
acteristic enhancement, while the other module projects respective
information into a joint feature space and adjusts weight coeffi-
cients dynamically. Therefore, we integrate multi-model signals for
semantic features enhancement. As a result, the utterance informa-
tion is predicted. Compared with audio-only or mmWave-only ASR,
Wavoice affords long-distance, noise-resistant, and motion-robust
speech recognition in public applications. We demonstrate its ef-
fectiveness in various scenarios with a low recognition error rate.
Particularly, it can be adopted into in-vehicle applications against
interference of various practical motions.

In conclusion, our contributions are as follows:
• We design a multi-modal ASR system named Wavoice for VUI’s
public application. It fuses mmWave and audio signals to facilitate
accurate speech recognition in case of noise, motion interference
under complex conditions.

• We investigate the inherent correlation between mmWave and
audio signals with a mathematical model. Accordingly, we pro-
pose real-time and anti-interference methods for voice activity
detection and user targeting respectively.

• We refine the attention-based multi-modal fusion network with
cross-modal recalibration. It supports the robustness of Wavoice
and improves its sensing distance. Results show the character
recognition error rate below 1% in a range of 7 meters even under
unfavorable conditions.

2 BACKGROUND
In this section, we briefly introduce the mechanism of mmWave
sensing, especially in the field of vocal vibration sensing, and the
attention mechanism for information fusion.
2.1 mmWave Sensing Mechanism
The frequency modulated continuous wave (FMCW) radar is widely
used to transmit mmWave signals for the perception of the physical
world to capture. It performs well in tiny displacement measure-
ment as well as cover penetration [35, 75].

Distance Estimation. The FMCW radar transmits chirp signals,
whose frequency changes linearly in a specific range periodically.
The receive antenna in the radar captures the reflective chirp signal
from the object. The received chirp is immediately mixed with the
transmitted chirp by a mixer to obtain the mixed signal. The mixed
signal, including a replica of the transmitted signal, is filtered out
by a low-pass filter to obtain the intermediate frequency (IF) signal.
Analysing the spectrum of IF signals, we can estimate the distance
𝐷 between the object and the radar as follows:

𝐷 =
𝑐 𝑓𝐼𝐹𝑇𝑐

2𝐵 , (1)
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where the 𝑐 denotes the speed of light, 𝑇𝑐 is the duration of a chirp,
𝑓𝐼𝐹 is the frequency of IF, and 𝐵 is the bandwidth of a chirp.

Angle Estimation. An FMCW radar can estimate the angle of
arrival (AoA), the elevation angle of reflected signals. It employs
multiple antennas where the differential distance from the detected
object to each antenna results in a phase change 𝜔 . We can obtain
AoA as follows,

𝐴𝑜𝐴 = arcsin ( 𝜆𝜔2𝜋𝑙 ), (2)

where 𝜆 is the wavelength and 𝑙 represents the distance between
the receiving antennas.

Speech Sensing.Due to the sensitivity to displacements, mmWave
signals are exploited for speech sensing [9, 22, 31, 33, 34, 75]. Re-
searchers started from themmWave-based vocal vibration detection
against noise interference [33, 34]. Further research [9, 22, 75] lever-
aged mmWave to capture vocal vibration for the reconstruction of
genuine speech. Additionally, a mmWave radar can distinguish sub-
tle differences of users’ vocal vibration, whose uniqueness supports
a mmWave-assistant non-contact voice authentication. However,
above systems [9, 22, 33, 34, 75] have a limited sensing distance of
at most 2 meters. Moreover, they are vulnerable to motion influ-
ence. The short sensing range and vulnerability to motion restrict
mmWave-based systems’ application in practice, especially the
public speech recognition.

2.2 Attention Mechanism for Fusion
We aim at a multi-modal speech recognition system based on the
mmWave and audio signals. The key issue is to maximum advan-
tages of both signals to deal with complex scenes such as ambient
noise and long-distance sensing. voting mechanism [48] seems to
be a convenient assistant to the multi-modal fusion. It selects the
better results from simultaneous signals of different modalities as
final ones. It can compensate for information loss if one kind of
signal is ruined. However, mmWave and audio signals are likely to
be corrupted simultaneously. For example, users may fidget while
calling on ASR-based devices in a noisy environment. Furthermore,
in long-distance sensing tasks, the acoustic attenuation would in-
duce a further cut in the audio SNR, while significant multipath
effect of mmWave signals introduces additional noise masking valid
information.In this case, a simple voting mechanism cannot afford
a long-distance speech recognition.

Attention-based networks may provide a possible solution. At-
tention mechanism has been widely used in the information fusion
[32, 40, 57]. Incorporating attention modules into deep neural net-
works (DNNs) has shown significant success across multiple fields,
such as natural language processing [63] and computer vision tasks
[23]. Various attention modules [24, 40, 51] are proposed for the
better fusion. In particular, efficient channel attention (ECA) [51]
performs well in guiding networks to notice important knowledge.
Inspired by this, we integrate ECA blocks into classical DNN with
two additional novel modules (See Section 4.3) for the fusion of
mmWave and audio signals.

3 CORRELATION MODEL
In this section, we exploit the relationship between voice signals
and reflected mmWave signals with a theoretical model. It is funda-
mental for the fusion of multi-modal signals.

Human voice basically depends on the vocal fold vibration. The
vocal vibration process can be regraded as a one-degree-of-freedom
damping system [11]. We have

𝑚 ¥𝑥 (𝑡) + 𝑟 ¤𝑥 (𝑡) + 𝑘𝑥 (𝑡) = 𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 ) , (3)

where𝑚, 𝑟 , and 𝑘 are parameters decided by the vocal fold, and
𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 ) is the negative coulomb force with the frequency 𝑓𝐹
and the initial phase 𝜙𝐹 . As a result, we obtain the vocal fold vibra-
tion velocity 𝑥 (𝑡) as follows,

𝑥 (𝑡) = 𝑘𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 +𝜙𝑘 ) ,

¤𝑥 (𝑡) = 𝑗2𝜋 𝑓𝐹𝑘𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 +𝜙𝑘 ) = 𝑗2𝜋 𝑓𝐹𝑥 (𝑡),
(4)

where 𝑘 is the amplitude gain and 𝜙𝑘 is the phase lag.
Audio signals record human voice without distortion through

microphones. Typically, they are considered as a compound of series
of single-frequency tones [21, 72] looking like

𝑣 (𝑡) =
∑
𝑖

𝐴𝑖𝑠𝑖𝑛(2𝜋 𝑓𝑖𝑡 + 𝜃𝑖 ), (5)

where 𝑣 (𝑡) is the human voice, and 𝐴𝑖 , 𝑓𝑖 , and 𝜃𝑖 are respectively
amplitude, frequency, and phase of the 𝑖-th harmonic. Its base-
band frequencies are equivalent or close to the speed of vocal fold
vibration [75]. The relationship can be simplified as

𝑣 (𝑡) = 𝐻 ( ¤𝑥 (𝑡)) = 𝐻 ( 𝑗2𝜋 𝑓𝐹𝑥 (𝑡)), (6)

where 𝐻 (·) is the transfer function from the vocal fold vibration
velocity ¤𝑥 (𝑡) to human voice 𝑣 (𝑡).

mmWave-based vocal vibration sensing compares the phase
difference of reflected signals for vibration measures. The reflected
mmWave signals 𝑟 (𝑡) from the vocal folds is represented as:

𝑟 (𝑡) = 𝑒 𝑗 (2𝜋 𝑓𝐼𝐹 𝑡+𝜙 (𝑡 )) , (7)

where 𝑓𝐼𝐹 is IF signal and 𝜙 (𝑡) is the phase of the reflected signal.
The displacement of vocal folds is contained in 𝜙 (𝑡) as follows,

𝜙 (𝑡) = 4𝜋 𝑓𝑚 (𝑡) (𝐷 + 𝑥 (𝑡))
𝑐

, (8)

where 𝑓𝑚 (𝑡) is the time-variant frequency of mmWave signal, 𝐷 is
the distance between the mmWave radar and the target user, and 𝑐
is mmWave’s speed. Since the motion of target objects or radars, if
any, is usually lower than sampling, 𝐷 can be deemed a constant
in a tiny time interval 𝑑𝑡 . By differentiating 𝜙 (𝑡), we have

Δ𝜙 (𝑡) = 𝜙 (𝑡 + 𝑑𝑡) − 𝜙 (𝑡)

=
4𝜋
𝑐

(𝑥 (𝑡)𝑑 𝑓𝑚 (𝑡) + 𝑓𝑚 (𝑡)𝑑𝑥 (𝑡)) + 4𝜋𝑑 𝑓𝑚 (𝑡)𝐷
𝑐

,
(9)

where𝑑 𝑓𝑚 (𝑡) is the frequency shift of FMCWmmWave signals, and
𝑑𝑥 (𝑡) is the displacement change in vocal fold. Since 4𝜋𝑑 𝑓𝑚 (𝑡)𝐷 ≪
𝑐 , the item 4𝜋𝑑𝑓𝑚 (𝑡 )𝐷

𝑐 can be ignored. Here, 𝑑𝑡 and 𝑑 𝑓𝑚 (𝑡) are fixed,
determined by the mmWave radar’s sampling rate and frequency
variation rate respectively. Therefore, Δ𝜙 (𝑡) depends exclusively
on 𝑥 (𝑡), and we have

Δ𝜙 (𝑡) = 4𝜋
𝑐
(𝑑 𝑓𝑚 (𝑡) + 𝑗2𝜋 𝑓𝐹 𝑓𝑚 (𝑡)𝑑𝑡)𝑥 (𝑡) . (10)

It indicates that the phase difference of reflected mmWave signals
share the identical frequency with the vocal fold displacement. In
the real measurement, all complex items are performed on their



SenSys’21, November 15–17, 2021, Coimbra, Portugal T. Liu et al.

Figure 2: Wavoice, a multi-modal speech recognition system that leverages a mmWave radar and a low-cost microphone to
improve the resistance against noise and motion interference in complex environment.

real parts, and in Eq. 10, the item 𝑥 (𝑡) is replaced by 𝑅𝑒{𝑥 (𝑡)} =

𝑐𝑜𝑠 (2𝜋 𝑓𝐹 𝑡 + 𝜙𝐹 + 𝜙𝑘 ).
The coherence between frequencies of differentmodal sig-

nals reveals the feasibility of their fusion. Specifically, both 𝑣 (𝑡) and
Δ𝜙 (𝑡) originate from the vocal fold displacement. According to Eq.
6 and Eq. 10, 𝑣 (𝑡) owns components whose frequency overlaps or
approaches the frequency of Δ𝜙 (𝑡). Furthermore, once the transfer
function 𝐻 (·) is determined, we can calculate signals of one modal
directly by the other one. In this paper, we entitle Wavoice noise-
resistant voice activity detection on the basis of this frequency-
dependent property and train a DNN to fusion multi-modal signals
for long-distance speech recognition.

4 SYSTEM DESIGN
Wavoice leverages mmWave and audio signals to recognize the
speech under complex conditions. It consists of four modules, i.e.,
Voice Activity Detection, User Targeting, Fusion Network, and Seman-
tic Extraction, as presented in Figure 2.
4.1 Voice Activity Detection
On the basis of the above frequency-dependent property, Wavoice
employs the coherent demodulation composed of a multiplier and
a filter. It has been proven to provide a noise-resistant method to
detect voice activities through the detection assessment.

Motivation. The real-time voice activity detection is a funda-
mental step for ASR. Without a proper detection mechanism, sig-
nificant resources would be wasted on dealing with meaningless
noise. However, intense noise is likely to cover human voices with
an extremely low SNR in public places. Face masks further blur
vocal features. Under these circumstances, audio-only voice activity
detection would make a wrong judgement and be not responsive
to users’ commands [27]. Users have to raise their voices or take
off their face masks, but this is inconvenient. Fortunately, voice ac-
tivities are recorded by mmWave and audio signals simultaneously.
We can leverage their coherence to amplify the difference between
noise and voice activities.

Solution. Wavoice draws the collective characteristic between
mmWave and audio signals for the accurate judgement in real time
through the coherent demodulation. Wavoice simultaneously re-
ceives signals of twomodalities. These signals are segmented into 3s
frames with a 50% overlap between successive frames. We perform
min-max scaling on the mmWave and audio signal respectively.
For collecting the mmWave signal, we perform range-FFT on the
received chirp signal to obtain the range information of objects. We
leverage the classic detection method named OS-CFAR[52] to detect

the objects, i.e., the FFT bin of the reflective object. The number of
detected objects is decided by the number of people and other ob-
jects such as furniture, since the objects cannot stack together due
to the radar’s 4 cm range resolution. Note that the radar receives the
genuine signal corresponding to voice activity and other irrelevant
signals. Therefore, we design the voice activity detection to distin-
guish the genuine signal. Audio signals are down-sampled to 16
kHz to save computational resources, and the down-sampled voice
signal 𝑣 (𝑛) still retains complete human speech information. We
obtain the sampling data from the object’s FFT bin per chirp signal.
Thus, the sampling duration of the preprocessed mmWave signal
is chirp duration. Then we up-sample the preprocessed mmWave
signal to 16 kHz by using linear interpolation.

We obtain the phase 𝜙 (𝑛) by conducting fast Fourier transform
on the sampled mmWave signal. Then the phase difference is

Δ𝜙 (𝑛) = 𝜙 (𝑛) − 𝜙 (𝑛 − 1) (𝑛 ∈ N+). (11)

Inspired by the frequency-dependent property between Δ𝜙 (𝑛) and
𝑣 (𝑛), we multiply them, followed a low-pass frequency filter for
voice activity detection. If Δ𝜙 (𝑛) and 𝑣 (𝑛) share components of
the same or similar frequency, we will obtain an energy peak at
low-frequency band after coherent demodulation [14]. We assume
𝐻 (·) = 1 here to illustrate this method’s effectiveness ad follows
F(𝑛) = LPF(𝑣 (𝑛) ∗ Δ𝜙 (𝑛))

= LPF( 4𝜋
𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑗2𝜋 𝑓𝐹 𝑓𝑚 (𝑛)𝑑𝑡)𝑅𝑒{𝑥 (𝑛)}2)

=
4𝜋
𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑗2𝜋 𝑓𝐹 𝑓𝑚 (𝑛)

𝐹𝑠
),

(12)

where F is the residual low-frequency component, LPF(·) is a low-
pass frequency filter, 𝐹𝑠 is the mmWave radar’s sampling rate, and
the item 4𝜋

𝑐 (𝑑 𝑓𝑚 (𝑛) + 𝑗2𝜋 𝑓𝐹 𝑓𝑚 (𝑛)
𝐹𝑠

) is a known low-frequency value.
When the spectral entropy of F is larger than a given threshold,
vocal vibration is recorded simultaneously by Δ𝜙 (𝑛) and 𝑣 (𝑛) and
it indicates that voice activities occur. Even if noise ruins audio,
mmWave signals, or even worse both, the coherent demodulation
still works due to the difference between noises and voice signals
in the frequency domain. In noisy environment, Eq. 13 is rewritten
as follows,

F(𝑛) = LPF((𝑣 (𝑛) + 𝑛𝑣 (𝑛)) ∗ (Δ𝜙 (𝑛) + 𝑛𝜙 (𝑛)))

=
4𝜋
𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑗2𝜋 𝑓𝐹 𝑓𝑚 (𝑛)

𝐹𝑠
),

(13)

where 𝑛𝑣 (𝑛) and 𝑛𝜙 (𝑛) are the noise on mmWave and audio signals
respectively. High-frequency items𝑛𝑣 (𝑛)Δ𝜙 (𝑛) and𝑛𝑣 (𝑛)𝑛𝜙 (𝑛) are
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introduced by noise but removed by the filter with little influence
left. Since the duration of chirp signals is very short, i.e., 260s in
the experimental setting, the phase offset in the mmWave chirp
duration can be considered constant. The phase offset can be coun-
teracted when differencing the phase. Therefore, the phase offset
has little effect on the multiplication results.

Detection Assessment. To investigate the effectiveness of the
proposed detection module, we collect corresponding mmWave
and audio signals from five subjects. During the collection, we ask
each subject in 4 kinds of noisy environments (detailed setup in
Section 5.1) to remain quiet after continuously speaking utterances.
After extracting the phase difference of mmWave signals, we gen-
erate the low-frequency component F by multiplying the phase
difference with the audio signal. As illustrated in Figure 3, F ranges
in the low-frequency band typically within 200Hz, while the multi-
plication corresponding to the non-speech segment cannot be seen
as anything useful. Vividly, the non-speech and speech segment
is explicitly divided after the coherent demodulation. In addition,
the varying spectrogram of mmWave signals in Figure 3 supports
mmWave signals’ ability of the vocal vibration seizing. Empirically,
the cut-off frequency of a low-pass filter is set to 300Hz and the
threshold of spectral entropy is set to 0.835. By comparing the
spectral entropy of F with the given experiential threshold, we can
detect voice activity with an accuracy of 97.12%. On the contrary,
the voice activity detection based on individual audio or mmWave
signals only has 56.48% and 88.92%, respectively. Additionally, the
whole process is finished within 50 ms. Wavoice manages in the
real-time voice activity detection against various noise interference.
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Figure 3: Though audio signals are noisy, the multiplication
introduces an additional low-frequency component that re-
sults in a sharp distinction between noise and noisy speech.

4.2 User Targeting
Speeches from surrounding non-target individuals may overlap
users’ commands. Wavoice proposes a targeting mechanism to de-
rive vocal commands of target objectives against such interference.

Motivation. In a multi-person scenario, surrounding speeches
would colour the recognition results of ASR. These voice noises
are mingled with valid vocal commands, or even cover up them
in audio signals recorded by microphones due to the mask effect

[14]. The audio-only ASR hardly distinguishes the target user who
speaks the wake-up word for the voice interaction from others.

Solution. In Wavoice, we propose a user targeting mechanism.
It detects the predetermined wake-up word by successively com-
paring each low-frequency component by multiplying mmWave
signals with audio signals after voice activity detection. Notwith-
standing mmWave signals sensing wake-up words, it is suscepti-
ble to motion interference and other multipath noise. In contrast,
Wavoice can precisely target the user’s command based on the
correlation between mmWave and speech signals. Once finding the
wake-up word, Wavoice separates its reflected mmWave signals
and ignores other multipath signals from ambient people. It targets
this objective and waits for subsequent commands.

The radar receives multiple reflected signals from people around,
while the microphone records the speech mixed with other per-
sons’ voices. Multiple reflected mmWave signals can be formulated
as: 𝑟1 (𝑛), 𝑟2 (𝑛), 𝑟𝑖 (𝑛), ..., 𝑟𝑢 (𝑛), 𝑟𝑚 (𝑛), where the subscript𝑚 is the
number of received mmWave signals decided by the number of per-
son in the sensing ranges after voice activity detection, 𝑟𝑖 (𝑛) is the
mmWave signal of the 𝑖-th person and 𝑟𝑢 (𝑛) is the mmWave signal
caused by the wake-up word from a user. We extract the correspond-
ing difference of phase Δ𝜙1 (𝑛),Δ𝜙2 (𝑛),Δ𝜙𝑖 (𝑛), ...,Δ𝜙𝑢 (𝑛),Δ𝜙𝑚 (𝑛)
from all reflected signals. We repeat the above coherent demodula-
tion between each mmWave signal and audio signals. Non-vocal
items are ignored. Afterwards, we leverage a one-class support vec-
tor machine (OC-SVM) to distinguish wake-up words from residual
voice-related items. However, throwing the unprocessed multipli-
cation production into the OC-SVM is easy to increase the risk
of model overfitting substantially. Instead, we extract the linear
predictive coding (LPC) as input to OC-SVM as follows,

F𝑖 (𝑛) = −
𝑝∑

𝑘=1
𝑎𝑘𝑖 F𝑖 (𝑛 − 𝑘) + 𝜀𝑣 (𝑛), (14)

where 𝑝 is the order of the linear prediction filter, 𝜀𝑣 (𝑛) is resid-
ual prediction error, and the set of 𝑎𝑘

𝑖
is the LPC. LPC features

of different words have a remarkable difference. Benefiting from
this property, we train the OC-SVM with LPC features to iden-
tify wake-up words and target users. Similar to the above analysis
on noise cancellation, the motion influence on mmWave signals
is suppressed. LPC yields high accuracy and robustness with low
computational cost.

4.3 Fusion Network
The fusion network comprises residual blocks with ECA (ResECAs),
Recalibration Module (RM), and Projection Module (PM) for multi-
modal signals fusion, as shown in Figure 2. The fusion network
refines characteristics and fuses features from different modalities
to learn a joint representation from multiple domains.The extracted
log-mel filterbank coefficients as network inputs followed by three
successive stacked ResECAs. The RM exchanges valid features for
mutual recalibration and characteristic enhancement, with recali-
brated features flowing into two successive stacked ResECAs. Lastly,
PM projects respective information into a joint feature space and
adjusts weight coefficients dynamically.

4.3.1 Log-mel Filterbank Coefficients.
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We extract log-mel filterbank coefficients as network inputs from
audio signals and residual voice-related mmWave signals respec-
tively. In detail, we first apply a pre-emphasis filter to the prepro-
cessed audio signal. After pre-emphasis, we perform the short-time
fourier transform (STFT) to measure the time and frequency domain
information. The STFT segments the audio signal into frames of 25
ms, with an overlap of 10 ms between successive frames. During
segmentation, we need to apply a Hamming window function to
frames to reduce spectral leakage. Then, the fourier transformed
audio signal passes through a set of band-pass triangular filters
known as mel-filter banks. Consequently, we calculate the loga-
rithmically compressed filter-output energy as log-mel filterbank
coefficient. The number of coefficients is equivalent to the number
of filters. In this paper, the filter bank comprises 40 filters covering
the frequency band within 8 kHz.

4.3.2 ResECA.
We construct two branches of ResECAs [51] to integrate the fea-

tures of two modalities. An ECA block is an attention-based block
that is made up of convolution layers, aiming to model interdepen-
dencies among channels of convolutional features. The ECA applies
the global average pooling (GAP) [24] to learn contextual informa-
tion in all receptive fields of networks instead of the limited local
field like traditional convolutional layers. Based on information in
all channels, the ECA generates the channel attention to enable the
network to focus on the more important region. Suppose the out-
put of one convolution layer is 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑐 ] , 𝑋 ∈ 𝑅𝐻×𝑊 ×𝐶 ,
where 𝐻 ,𝑊 , and 𝐶 are width, height, and channel dimension, 𝑥𝑐
refers to the produced channel feature of the 𝑐-𝑡ℎ filter in the convo-
lution layer. Then, GAP is applied to model channel-wise features
𝑍 = [𝑧1, 𝑧2, · · · , 𝑧𝑐 ] , 𝑍 ∈ 𝑅1×1×𝐶 , where the 𝑐-𝑡ℎ element of 𝑍

𝑧𝑐 = GAP(𝑥𝑐 ) =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑥𝑐 (𝑖, 𝑗) . (15)

The channel-wise feature 𝑍 contains statistical information of all
channels. Then we calculate the attention feature

𝐴 = 𝜎 (C1D𝑘 (𝑍 )), (16)

where 𝐴 = [𝑎1, 𝑎2, · · · , 𝑎𝑐 ] , 𝐴 ∈ 𝑅1×1×𝐶 , 𝜎 is a sigmoid activation
function, and C1D𝑘 represents one dimension convolution with
kernel size 𝑘 . The final output of the ECA block 𝑋 is obtained by
channel-wise multiplication between the 𝑋 and 𝐴:

𝑋 = 𝐴 ⊙ 𝑋, (17)

where ⊙ indicates scalar multiplication. The attention feature 𝐴
contains dynamic channel information that is continually optimized
in the iteration. We concatenate a typical residual block and an ECA
block to construct a ResECA as a basic module in the network. It
can be formulated as:

𝑌 = C (ECA(C(𝑋,𝑊𝐶 )),𝑊𝐶 ) + 𝑋, (18)

where the function C(∗,𝑊𝐶 ) represents multiple convolution layers
to capture features,𝑌 denotes the output of the ResECA, and ECA(·)
represents the ECA block. The operation C+𝑋 represents a shortcut
connection. The output frommultiple successive convolution layers
flows into the ECA block. After computing results through the
attention procedure in ECA, a shortcut connection adds the residual
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Figure 4: Architecture of Recalibration Module (RM). RM
generates recalibrated features by combining original fea-
tures with these from the other modality.

block’s input and the result of the ECA block to attain the final
output of the ResECA.

4.3.3 Recalibration Module.
Adevised RecalibrationModule (RM) is embedded into the fusion

network to integrate multi-modal features from different subnet-
works for multi-modal recalibration. In the following, we will first
describe the aim of RM and then introduce the mechanism of RM.

Motivation. Multi-modal recalibration is the process of com-
bining and complementing relevant information among different
modalities, leading to the performance of multi-modal fusion over
using only one modality. In traditional networks, features of dif-
ferent modalities are processed in a separate branch composed
by several ResECAs. However, stacked ResECAs only provide uni-
modal features rather than multi-modal features. However, such a
parallel-branch structure ignores the inherent correlation between
mmWave and audio signals.We need to establish the interaction and
collaboration of features of two modalities. More specifically, if the
speech feature suffers interference and attenuation, the mmWave
feature is required to guide the network framework to capture
underlying representation and supply the knowledge of vocal vi-
bration to the speech. Considering the impact of multipath noise
and body motion on mmWave signals, the speech feature is obliged
to recalibrate mmWave features.

Solution. We design a novel attention-based module, RM, as
an intermediate module to integrate features of two modalities.
Its structure is illustrated in Figure 4. It is inserted behind the
third ResECA so that features of two modalities from each branch
flow into the RM for mutual recalibration. We assume that 𝑋𝑊 ∈
𝑅𝐻×𝑊 ×𝐶 and𝑋𝑆 are two intermediate feature maps from their own
stream. The subscript𝑊 and 𝑆 individually represent the mmWave
and speech feature. The channel attention map 𝑌𝑊 and 𝑌𝑆 are

𝑌𝑊 = 𝜎 (𝑊𝑊 ReLU(GAP(𝑋𝑊 ))), 𝑌𝑊 ∈ 𝑅1×1×𝐶 , (19)

𝑌𝑆 = 𝜎 (𝑊𝑆ReLU(GAP(𝑋𝑆 ))), 𝑌𝑆 ∈ 𝑅1×1×𝐶 , (20)

where ReLU is a rectified linear unit (ReLU) function and𝑊 indi-
cates learnable parameter matrix. Each stream of channel feature
maps is considered as a feature detector and filter. We implement
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Figure 5: Architecture of Projection Module (PM). PM con-
structs the similarity matrix based on features of two flat-
tened modalities to learn joint representation.

mutual feature recalibration as follows,
𝑋𝑊 = 𝑌𝑆 ⊙ 𝑋𝑊 + 𝑋𝑊 , 𝑋𝑊 ∈ 𝑅𝐻×𝑊 ×𝐶 , (21)

𝑋𝑆 = 𝑌𝑊 ⊙ 𝑋𝑆 + 𝑋𝑆 , 𝑋𝑆 ∈ 𝑅𝐻×𝑊 ×𝐶 , (22)

where 𝑋𝑊 and 𝑋𝑆 are final outputs of RM. Therefore, we obtain
the multi-modal features. Aggregating the original feature map
guarantees that the final output stores enough identical knowledge.
The produced multi-modal features embedded in original unimodal
features will supply meaningful contexts and suppress useless ones
to achieve recalibration. RM can be flexibly placed at different levels
in networks to integrate hierarchical features with different spatial
dimensions. Here, we place one RM in the middle to fuse mid-level
features. It empirically produces comprehensive high-level features
through joint recalibration [51].

4.3.4 Projection Module.
PM maps features of two modalities into a joint feature space. It

finally fuses multi-modal signals for speech recognition.
Motivation. Due to the difference of multi-modal signals, DNN

cannot fuse these signals and transform them into semantic infor-
mation directly. Tradition methods [46, 76] concatenate multiple
modalities from different streams directly. They ignore the dynamic
distribution of the weight across multi-modal features. Instead, the
joint feature [40] using typical methods focuses on all multi-modal
features equally, which costs large-scale training data to allow a
network to take full advantage of multi-modal features.

Solution. Inspired by the co-attention [40], we create another
novel attention-based module to project multi-modal features into
a joint feature space. This module called projection module (PM)
aims to adaptively emphasize more important features and suppress
less important ones in all elements of multi-modal features. Its
structure is illustrated in Figure 5. PM constructs the similarity
matrix of features of two modalities to measure the correlation
between each element of speech and each element of mmWave.
With the similarity matrix, we can respectively map each modality
into another modality space. It induces high attention weights for
the more distinct element in both modal spaces.

Given two feature maps𝑀 ∈ 𝑅𝐻×𝑊 ×𝐶 and 𝑉 ∈ 𝑅𝐻×𝑊 ×𝐶 from
their own stream, let 𝑀 denotes the mmWave feature map from
the corresponding branch, and 𝑉 denotes the speech feature map.
We firstly have to flatten 𝑀 and 𝑉 into 2D-tensors with height
C and width W × H. We estimate the correlations between 𝑀 ∈

𝑅𝐶×𝐻𝑊 and 𝑉 ∈ 𝑅𝐶×𝐻𝑊 by calculating the similarity matrix 𝑆 .
The similarity matrix between𝑀 and 𝑉 is defined as:

𝑆 = 𝑀𝑇𝑊mv𝑉 , 𝑆 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 , (23)
where𝑊mv is a learnable weight matrix. Each column𝑚𝑖 in the
flattened matrix 𝑀 represents a feature vector of C dimension at
position 𝑖 ∈ [1, 2, · · · , 𝐻𝑊 ]. Each entry of 𝑆 reveals the correlations
between the corresponding column of𝑀 and𝑉 . We perform a row-
wise normalization to produce 𝑆𝑉 with a softmax function, and a
column-wise normalization to produce 𝑆𝑀 with a softmax function:

𝑆𝑀 = softmax(𝑆), 𝑆𝑀 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 , (24)

𝑆𝑉 = softmax(𝑆T), 𝑆𝑉 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 . (25)

The similarity matrix 𝑆𝑀 transfers mmWave feature space into
speech feature space (vice versa for 𝑆𝑉 ). And we have,

𝐶𝑀 = 𝑉 ⊗ 𝑆𝑀 , 𝐶𝑀 ∈ 𝑅𝐶×𝐻𝑊 , (26)
where ⊗ denotes matrix multiplication. Similarly, for the input
𝑉 , we compute attention contexts of the speech feature based on
every element of the mmWave, which is: 𝐶𝑉 = 𝑀 ⊗ 𝑆𝑉 . In order
to alleviate the underlying irrelevant interferences, we had better
restrict and weigh the knowledge from features of two modalities
than cope with all knowledge equally. Therefore, the final fusion
result 𝑍 is formulated as:

𝑍 =𝑊𝑍 {𝜎 (𝐶𝑀 ) ·𝑀 + 𝜎 (𝐶𝑉 ) ·𝑉 }, 𝑍 ∈ 𝑅𝐶×𝐻𝑊 , (27)
where · denotes the Hadamard product and𝑊𝑍 is a learnable pa-
rameter matrix. The 𝑍 that represents features of two modalities
selectively integrates informative information. The fine-grained
element in 𝑍 associated with vocal vibration and acoustic charac-
teristics occupies a dominant position. Eventually, the fusion result
is fed into the Semantic Extraction to identify the speech contents.

4.4 Semantic Extraction
We utilize the typical speech-to-text translation system [64, 77]
to build the semantic extraction architecture. We choose Listen,
Attend, and Spell (LAS) [7], a widely used end-to-end deep learning
approach because of its excellent performance on small-scale train-
ing data. It does not rely on any assumptions about the probability
distribution of character sequences [49].

LAS is composed of two components: an encoder called listener
and a decoder called speller [7]. The listener maps the acoustic
feature into the hidden feature through the pyramidal bidirectional
long short term memory (pBLSTM). Each successive pBLSTM layer
reduces the feature in half before feeding it to the next layer. The
speller, a stacked recurrent neural network, computes the probabil-
ity of output character sequences. It applies a multi-head attention
mechanism to generate context vectors. Context vectors, distribu-
tion of characters, and decode states are all fed into the RNNs for
the decoder state. The posterior distribution is computed based on
the decoder state and context vector via a softmax function [49].
LAS is trained to maximize the logarithmic posterior probability of
the correct character sequence.

Here, we stack two pBLSTM layers as the listener while the
speller contains two LSTM layers and an output softmax layer.
With the aid of LAS, Wavoice extracts the semantic information
from the joint features.
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5 EVALUATION
We implement the prototype of Wavoice using off-the-shelf de-
vices. We conduct a comprehensive evaluation on the recognition
accuracy and robustness of our system under various condition.

5.1 Setup
Hardware.We implement our system on a low-cost microphone

[15], a COTS IWR1642BOOST radar [60] equipped with a data
collection board DCA1000EVM [59], and a laptop, as shown in
Figure 6. The IWR1642BOOST equipped with DCA1000EVM is
a 77 GHz mmWave radar that transmits FMCW continuously in
order to measure range as well as angle. The mmWave radar has
two transmit antennas and four receive antennas. Our commercial
radar has a wide enough sensing range: it has an azimuth field of
view of 120 degree, an azimuth resolution of 15 degree, and a high-
resolution elevation view of 30 degree. The radar transmits a 4 GHz
wide chirp signal starting from 77 GHz to 81 GHz, which yields
high ranging resolution. We configure the radar in our experiments
to transmit a chirp with 260𝜇𝑠 cycle time. The received channel
has a 5000k ADC sampling rate, and each received chirp contains
1024 sample data. The detailed configuration of our FMCW radar is
shown in Table 1. The configuration enables our radar to have the
range resolution of 3.75 cm and displacement resolution around
300𝜇𝑚.

Table 1: Configuration of the mmWave radar.
Parameter Value Parameter Value

No. of frames 320 Frame periodicity 50 ms
No. of chirp 190 Frequency slope 15 MHz/ µs
Idle time 10 µs Ramp end time 250 µs

Software. We connect and control the radar with mmWaveStu-
dio GUI [61] running in the laptop. The mmWaveStudio GUI con-
figures the radar parameters as described above. We write an APP
in MATLAB to control the microphone and mmWaveStudio GUI to
capture the mmWave and audio signal simultaneously. The source
codes are released at https://github.com/TitaniumLiu/Wavoice.

Dataset. In our experiments, we choose 40 voice commands from
ok-google.io [18] and Google speech commands [68] that involve
common voice commands words in all aspects. All 20 participants,
including ten females and ten females, whose ages range from
16 to 47, speak all commands in their normal speech speed and
volume, typically 65 dB sound pressure level (db-SPL) [53]. We
place the mmWave radar and microphone at a distance of seven

mmWave 
radar

Microphone
Laptop

Figure 6: Experimental setup. AmmWave radar and amicro-
phone receive signals from subjects sitting 7 meters away.

meter from the subject. We align the mmWave radar to the subject
and guarantee the mouth and neck of subjects within the sensing
range of the mmWave radar since our commercial radar has a wide
enough sensing range. The participants are asked to say all voice
commands 40 times in a controlled laboratory environment. In
all, we collect 32000 pairs of samples (i.e., the mmWave and audio
signal) for each situation. We randomly choose the sample from
two males and two females as the test dataset. We thereby have
25600 training data and 6400 testing data. During the experiment,
participants are required to wear various masks, undergo diverse
noise, sit at different angles and distances from the mmWave radar,
and perform several bodymotions. The experimental scenes include
an office room, a roadside, a cafe, and an in-vehicle. Note that we
explicitly tell the participants about the purpose of our experiments.
Our research is approved by IRB: ZJU2021-6.

5.2 Metrics and Baseline
We measure Wavoice’ speech recognition accuracy from the per-
spectives of both character and word with two following metrics.
We select DeepSpeech2 (DS2) [5] as our baseline system for the
performance comparison.

Character Error Rate (CER). ASR system outputs a word se-
quence made of characters, similar but not equal to reference tran-
scriptions. Several characters need to be substituted, deleted, and
inserted. CER is computed with the minimum number of operations
[78] as follows,

CER =
𝐼𝑐 + 𝑆𝑐 + 𝐷𝑐

𝑁𝑐
, (28)

where 𝑁𝑐 represents the total number of characters and the mini-
mum number of character insertions 𝐼𝑐 , substitutions 𝑆𝑐 , and dele-
tions 𝐷𝑐 required to transform the output into the reference tran-
scription. Lower CER indicates the better speech performance of
the ASR system.

Word Error Rate (WER).WER is the standard metric to eval-
uate the performance of ASR systems. It computes the errors from
the word level by comparing output word sequences with reference
transcriptions as follows,

WER =
𝐼𝑤 + 𝑆𝑤 + 𝐷𝑤

𝑁𝑤
, (29)

where 𝑁𝑤 is the number of total words, 𝐼𝑤 , 𝑆𝑤 , and 𝐷𝑤 represent
the number of insertions, substitution, and deletions. The number
of errors is the sum of substitution, deletions, and insertions. Lower
WER certainly indicates that the ASR of the system is more accurate
in recognizing speech.

Baseline. We select DeepSpeech2 (DS2)[5], a state-of-the-art
ASR for deployment into the production setting, as the baseline
system to confirm Wavoice’s effectiveness. DS2, initially based on
Baidu AI research labs, is one of the mainstreams that has changed
the structure of traditional ASR. The network configuration and
training parameter of DS2 are consistent with the official article
[5]. We implement the DS2 under three different trial conditions:
(1) We directly test the well pre-trained DS2 model on our collected
speech datasets. (2) We continually train the pre-trained model on
our datasets and then test it. (3) We train and test a DS2 model
totally on our datasets. We observe DS2’s CERs are respectively
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Figure 7: Performance of Wavoice and DeepSpeech2 (DS2)
under various ambient noises.

90.60%, 71.22% and 34.46%. Therefore, we construct the baseline
results by implementing DS2 under the third condition.

5.3 Overall Performance
We evaluate the overall performance of Wavoice when users are
in different states. Three in-lab experiments are conducted to as-
sess whether our multi-modal system can show excellent speech
recognition capacity over the standard ASR system. The follow-
ing factors: (1) Ambient Noise, (2) Mask, and (3) Multi-Person are
considered respectively in the three experiments.

5.3.1 Ambient Noise.
Ambient noise reduces SNRs of received voice commands and

interferes with the recognition accuracy. We evaluate the speech
recognition performance of Wavoice under four types of noise con-
ditions, i.e., chatting, traffic, music, and waterflow. When subjects
speak required voice commands, four loudspeakers play noises
with 60 db-SPL at 40 cm from the microphone of Wavoice, with
SNR of recorded audio signals within 5dB. Figure 7 presents the
performance of Wavoice and DS2 under different noise interfer-
ence. DS2 obtains the low recognition accuracy with the average
CER above 20% and the average WER above 40%. The background
noise explicitly degrades the speech recognition accuracy of tradi-
tional ASR systems.This is because audio-only methods like DS2
are sensitive to unpredictable and unknown noise. On the contrary,
Wavoice yields superior performance with the average CER within
1% and the average WER about 2.5%. Even in the worst case (i.e.
traffic noise interference), Wavoice maintains WER about merely
3% and CER below 1.5%. With all comparisons and observations
above, we conclude that Wavoice is extremely stable and effective
against ambient noise.
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Figure 8: Performance of Wavoice under various SNRs of au-
dio signals.

We further investigate the speech recognition capability of Wavoice
under different SNR conditions. We adjust the source intensity of
noise here to modify SNR from -20 dB to 5 dB, with Wavoice’s CER
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Figure 9: Performance of Wavoice and DeepSpeech2 (DS2) in-
fluenced by masks without noise.

shown in Figure 8. When the SNR is above 0 dB, Wavoicemaintains
a tiny error rate that is nearly constant as SNR changes. When the
SNR is above -10 dB, the CRE increases a little but keeps lower
than 1 %. Wavoice can extract and fuse semantic information from
mmWave and audio signals to achieve noise-resistant multi-modal
speech recognition. We observe that the CER of speech recognition
is stable as SNRs decrease under -15 dB. This is because acous-
tic information in audio signals vanishes in adversely low SNRs,
leading to the convergence of the multi-modal system. In this case,
the performance of Wavoice depends on mmWave radar merely.
In short, Wavoice obtains an accurate and noise-resistant speech
recognition by fusing mmWave and audio signals.

5.3.2 Mask.
We study the speech recognition capacity of Wavoice when

users wear face-masks and speak voice commands. We select some
typical masks: disposable medical masks, N95 respirator masks,
gas masks, and anti-dust masks. A series of experiments are con-
ducted where participants put on a given mask and speak words.
To further measure the proposed system’s penetration, we addi-
tionally require the subject to wear a scarf in one experiment. All
selected masks and their indexes are listed in Table 2. The speech
recognition results in Figure 9 show that diverse masks worn by
subjects degrade the acoustic properties and voice quality in differ-
ent extent. The speech recognition capacity of DP2 is dramatically
impacted by mask conditions, particularly when the air tightness
of the mask is relatively high. The results in Figure 9 show that
our system consistently outperforms the baseline when the subject
wears different masks. We observe that the CER of Wavoice is all
nearly 1% while the baseline is mostly above 5%, which confirms
our system’s effectiveness against acoustic degradation caused by
masks. Through the comparison, we validate that the fusion of
mmWave and audio signals can significantly enhance the speech
recognition performance regardless of mask conditions.

Table 2: Models of involved masks.
No. Type No. Type
1 Disposable medical mask 4 Scarf + N95 mask
2 Scarf 5 Gas mask
3 N95 respirator mask 6 Anti-dust mask

5.3.3 Multi-Person Scene.
In a multi-person scene, the radar in the system tends to receive

various reflected signals from people around. Those reflected signals
contain components unrelated to the user’s vocal vibration. To
investigate the effectiveness of the proposed targeting module, we
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Figure 10: Performance in a multi-person scene.

further conducted experiments in a multi-person scene. We asked
each of five subjects to take turns as the target user and the other
four subjects walked around and spoke freely in the meantime.

Except for speaking voice commands, each subject acting as the
user is requested to say the wake-up word 30 times for training
the classifier and 10 times for testing. The wake-up word is set to
"Wavoice". We thus collect the positive sample (i.e., the mmWave
and audio signal related to the wake-up word) and the negative
sample related to other utterances. To verify the performance of
targeting the user, we preprocess the sample to produce the LPC
feature and then use testing samples to examine the trained classi-
fier. We derive the receiver operating characteristic (ROC) curve as
shown in Figure 10(a). We observe that the user targeting module
achieves more than 98.8% true positive rate (TPR) and less than
1.1% false positive rate (FPR) with an equal error rate (EER) of
0.99%, which confirms the effectiveness of targeting the user in
a multi-person scene. Moreover, we evaluate the performance of
speech recognition under multi-person conditions. We measure
the CER of the system on recognizing speech as shown in Figure
10(b). By averaging the recognition result of commands from five
subjects, we get an overall speech recognition accuracy of 1.2%.
The results in Figure 10(b) demonstrate that the system is highly
effective against interference from people around.

5.4 Performance Comparison
In this section, we carry out the ablation study to quantify the fusion
of two modalities signals and our proposed fusion methods. In
comparison, we comprehensively validate our approach by ablating
specific components:
• Speech-only, where no mmWave is fused in our proposed net-
work. We clip off the subnetwork of speech in our fusion network.

• mmWave-only, where no speech is fused in our proposed net-
work. We clip off the subnetwork of mmWave in our fusion
network.

• Voting, where the result is generated by voting [48] between
two outputs from the two modified networks above, i.e., Speech-
only and mmWave-only. The weight coefficient of recognized
texts from the two networks will be updated during the training
iteration of the majority voting. The final result is decided by the
text which has higher confidence.

• W/O Fusion, where no proposed fusion module is performed.
The two subnetworks of our fusion network still receivemmWave
and audio signals separately. Then, features of two modalities
are concatenated and fed into the Semantic Extraction.

• W/OResECA, where no ResECA is performed. We replace ResE-
CAs with classic residual blocks.

• W/O RM, where no RM is performed. The two subnetworks
receive mmWave and audio signals separately. At last, the PM
receives the two individual features.

• W/O PM, where no PM is performed. The RM still recalibrates
the two features.

Moreover, except for DS2, we compare our model with another
state-of-the-art speech recognition network: Wav2Letter [50]. No-
tably, Wav2Letter, a structured-output learning approach based on
a variant of CTC, has an outstanding performance on noisy speech
[50]. All of the models are fairly and fully pre-trained on our col-
lected datasets and then validated on the same testing setup. The
results of comparison are shown in Table 3.

Table 3: Performance comparison among speech recogni-
tion methods under different conditions.

Method Noise Mask
CER(%) WER(%) CER(%) WER(%)

Speech-only 45.18 73.24 8.12 29.66
mmWave-only 10.25 40.76 9.46 33.40
Voting [48] 10.78 48.20 5.37 20.21
W/O Fusion 12.71 35.38 6.43 29.20
DS2 [5] 41.12 72.70 7.13 30.32

Wav2Letter [50] 22.17 46.28 4.72 12.23
W/O ResECA 2.43 4.41 1.78 3.35
W/O RM 4.53 8.82 4.21 9.24
W/O PM 4.08 7.65 3.16 5.882
Wavoice 0.69 1.72 0.76 1.65

As shown in Table 3, audio-only methods (i.e., Speech-only, DS2,
andWav2Letter) present high CERs andWERs, especially in dealing
with noisy speech. Therefore, we speculate that unpredictable am-
bient noise impedes the performance of audio-only methods. The
mmWave-only method struggles in providing reliable results, attrib-
uted to its susceptibility to varying multipath noise and relatively
coarse-grained perception. However, Voting and W/O Fusion yield
slightly better results over the baseline with merely 10.78% CER and
12.71% CER in noise, which verifies that ignoring the correlation
and collaboration between mmWave and audio signals is unable to
exploit two modalities signals for utmost performance in speech
recognition. Meanwhile, our fusion modules improve W/O Fusion
by over 12% and 5% in terms of CER under different conditions.
Our system with fusion modules is superior to the Voting by 10%
and 4% in terms of CER in two different environments, respectively.
Besides, Wavoice outperforms WaveEar[75] whose WER is mostly
more than 4% , especially under motion interference. Moreover, we
conduct an ablation study by considering the different proposed
modules of the fusion network. The comparison result shows that
every module we propose plays a vital role in speech recognition
performance. In summary, our system with fusion modules outper-
forms the aforementioned methods. These experiments indicate
that our proposed fusion modules adequately utilize the correlation
between two modalities signals.
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Figure 11: Performance centred by Wavoice.

5.5 Robustness Analysis
We further analyze the robustness of Wavoice under the influence
of different distance and orientation, body motion, and environ-
mental disturbance. Note that the sensing distance of the radar and
microphone is still 7 meters in the body motion and environmental
disturbance circumstances.

5.5.1 Distance and Orientation.
We compare the performance of Wavoice when the user is lo-

cated at different distances and orientations of the mmWave radar.
In this experiment, the sensors, including the mmWave radar and
microphone, are set at different distances (from 1 m to 10 m) and
different orientations (from -60° to 60°) to the subjects’ mouth
and throat. The overall results are shown in Figure 11. When the
distance is larger than 9 m, the CER slightly increases as the dis-
tance increases. This is because when the energy of speech decays
rapidly, especially at exceedingly long distances, the microphone
thereby captures the raw speech from subjects. As for the orien-
tation, speech recognition results are less than 1.5% in all orienta-
tions when the distance is less than 9 meters. Our system’s speech
recognition performance is relatively stable and excellent as the
orientation changes. We envision that recorded omnidirectional
signals by the microphone are exploited to recalibrate and enhance
coarse-grained mmWave features in the proposed fusion network.
Our system can support flexible and convenient speech recognition
even though the user is in a remote location.

5.5.2 Body Motion.
We evaluate the robustness of Wavoice when users are in body

motion. We request five subjects to speak commands and perform
body motions, including making telephone calls, typing on phones,
shaking arms, and marching on the spot. We test the CER of five
subjects across different body motions and the corresponding re-
sults in Figure 12. As shown in Figure 12, the average CERs are
0.33% and 0.37% in the calling and typing smartphone, respectively,
while CERs are slightly high but are mostly less than 1% in other
body motions. The results further prove that Wavoice is robust
to the common body motion. When the user is in motion such
as march, the directly extracted phase across multiple FFT bins is
mixed up with motion interference. However, acoustic signals are
fused to recalibrate mmWave features and compensate for the loss
of information in the proposed system. Thus, motion interference
has a limited impact on the performance of the system.

5.5.3 Environmental Disturbance.
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Figure 12: Performance under the body motion influence.
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Figure 13: Performance under environmental disturbance.

Since our experiments are set in our controlled laboratory envi-
ronment, we also evaluate the system in the real-world environment.
We conduct experiments on four types of scenes: a filled office, a
noisy cafe, a busy roadside, and a subway. We request five partic-
ipants to speak voice commands naturally and comfortably. The
collected data is fed into the pre-trained Wavoice modal to verify
the universality. The results of speech recognition are shown in
Figure 13. The average CERs are 0.49%, 1.02%, 1.64%, and 1.77%, re-
spectively. Although the accuracy of speech recognition is slightly
degraded, the results in Figure 13 demonstrate the universality of
Wavoice in arbitrary realistic scenes.

We also study the generalization of Wavoice in a vehicle, where
the mmWave radar tends to wobble during driving. three subjects
are asked to speak commands as driving a vehicle. The mmWave
radar and microphone are appropriately placed on the automotive
center stack, which does not affect the subject’s driving. Figure
14(a) shows the experimental setup. Each subject drives 20 minutes
following the route shown in Figure 14(b) at the normal speed
in the urban area. To fully validate the generalization, when the
subject speaks commands, we play music in the vehicle during
driving. After attaining the two modalities signals during driving,
we examine the speech recognition capacity of Wavoice.

mmWave 
radar

Microphone

Laptop

(a) In-vehicle setup. (b) The driving route.
Figure 14: The setup in a vehicle for collecting data and the
corresponding driving route.

As we can see in Figure 15(a), the average CER stays below
0.5% as the driving distance rangs from 0 to 4 km. Figure 15(b)
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shows that the CER of three subjects are 0.45%, 0.20%, and 0.30%
respectively, which indicates that the average CER is 0.32% in one
hour of driving time. The results demonstrate that our system
is competent for speech recognition in vehicles regardless of the
wobble of mmWave radar. This is reasonable because the mmWave
radar and microphone receive enough useful signals in a narrow
space to generate fusion features for accurate speech recognition.

6 DISCUSSION
Hardware Support. Compared with traditional ASR systems

[4, 17], Wavoice requires an additional mmWave radar but merely
one microphone. Nevertheless, mmWave radars diffuse rapidly with
the development of mmWave technologies in wireless sensing [54]
and 5G communication [66]. For example, Pixel 4 [16] has carried
the miniature mmWave radar for man-machine interaction. Fur-
thermore, various ambient noises requires excessive microphones.
Under a specific layout, microphone arrays demand a lager vol-
ume but obtain a small coverage. In this case, it is foreseeable that
Wavoice will be applied on voice-controlled devices for speech
recognition in various scenes.

Sensing Range. It has been demonstrated that Wavoice has a
range coverage of 10 meters with 120◦ field-of-view. It can deal
with most applications where users face sensors within a certain
deviation, such as voice-controlled elevators and ATMs. As for
applications in the fully open space, such as smart streetlights, it
requires at least three radars for a 360◦ coverage but increases costs.
A possible way is to rotate the mmWave radar with the aid of user
targeting, which has been applied in commercial wireless chargers
[74]. Furthermore, we can employ a microphone array rather than
a single one for the further sensing range extension.

Cost and Power Consumption. Wavoice requires a mmWave
radar and a low-cost microphone. Here, a mmWave radar chip costs
about 40 dollars [60] and a microphone costs about 10 cents. Con-
sidering the long sensing distance and the resistance against noise,
Wavoice is more affordable than the high-cost directional micro-
phone array, at an average price of around 50 dollars. Furthermore,
the cost of mmWave radars will reduce as its popularity and mass
production. As for the power Consumption, both mmWave radars
and microphones perform well. Their power consumption both
keep below than 20mW, which is acceptable for most VUIs.

Speech Separation. Speech Separation is the task of separating
and recovering the target speech from background interference
such as the cocktail party effect. Due to the benefit of speech sepa-
ration to VUIs, it is worth extending Wavoice to separate speech
from noisy signals. Motivated by the research on deep complex
networks [10, 62], Wavoice has the potential to achieve speech sep-
aration. Due to the flexibility of Wavoice, the complex network can
replace our semantic extraction network in the system to predict
the magnitude and phase spectrogram of target speech. Then, the
original speech can be estimated by performing the inverse Fourier
transform on the estimated spectrogram.

7 RELATEDWORK
mmWave-based Sensing benefits high precision sensing in

complex environments [8, 38, 39]. Chang et al. [8] leveraged a
spatial attention fusionmethod for obstacle detection by integrating
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Figure 15: Performance of Wavoice’s in-vehicle application.
data from mmWave radar and vision sensor. The mmWave-vision
fusion can improve resolution and expand measuring ranges [12,
37, 79]. The mmWave radar also has comprehensive cooperation
with IMU to estimate ego-motion [3, 39]. Furthermore, Lu et al.
[38] reconstructed an indoor grid map with a mmWave radar and a
lidar. Similar works displayed that the mmWave-lidar collaboration
benefits system stability [29, 73].

Speech Enhancement aims at improving the quality and intel-
ligibility of degraded speech in adverse listening conditions with
the aid of microphone arrays [6, 20, 28, 36, 45, 69]. Classic statistic-
based methods [21, 72] require prior knowledge about noise char-
acteristics. Learning-based techniques have gained in popularity
which leverage DNN [46, 76] or generative adversarial networks
(GANs) [13, 47] but fail in long-distance speech recognition.These
techniques demand excessive microphones (more than the number
of noise sources) and a particular layout. These requirements may
lead to a too large volume to be integrated into public application.

Cross-modal SpeechRecognition provides a new idea against
noise interference. Audio-visual means detect lip motion [1] or face
landmarks [43], while ultrasound-assisted techniques [30, 56] mea-
sure vocal vibration to extract target speeches. Moreover, WiFi
signals [65] and inertial signals [2] can recover semantic informa-
tion. Different from existing work, we fuse mmWave and audio
signals through the improved network with SENet-based inter-
attention. Wavoice supports long-distance speech cognition (up to
7 meters) in public places full of noise and motion interference.

8 CONCLUSION
In this paper, we employ a mmWave radar and a microphone for
long-distance, noise-resistant, and motion-robust speech recogni-
tion. We formulate the correlation between mmWave and speech
signals. Benefiting from this correlation, we propose a voice activity
detection method against noise interference and a user targeting
mean to avoid overlaps with non-target users. Two novel mod-
ules are introduced into an attention-based network based on the
inter-attention between multi-modal signals. Here, mmWave signal
improves recognition accuracy despite ambient noise or face masks,
while audio signals rectify errors caused by motions. Wavoicemain-
tains a low error rate within 1% and its range reaches up to 7 meters.
It provides a comprehensive solution to public applications of VUIs.
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