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ABSTRACT
In cyber-physical systems, inertial sensors are the basis for identify-
ing motion states and making actuation decisions. However, exten-
sive studies have proved the vulnerability of those sensors under
acoustic transduction attacks, which leverage malicious acoustics to
trigger sensor measurement errors. Unfortunately, the threat from
such attacks is not assessed properly because of the incomplete
investigation on the attack’s potential, especially towards multiple-
degree-of-freedom systems, e.g., drones. To thoroughly explore
the threat of acoustic transduction attacks, we revisit the attack
model and design a new yet practical acoustic modulation-based
attack, named KITE. Such an attack enables stable and controllable
injections, even under frequency offset based distortions that limit
the effect of prior attacking approaches. KITE exploits the potential
threat of transduction attacks without the need of strengthening
attackers’ abilities. Furthermore, we extend the attack surface to
multiple-degree-of-freedom systems, which are more widely de-
ployed but ignored by prior work. Our study also covers the scenario
of attacking moving targets. By revealing the practical threat from
acoustic transduction attacks, we appeal for both the attention to
their harm and necessary countermeasures.
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1 INTRODUCTION
Cyber-physical systems (CPSs) are widely deployed in various areas,
including consumer electronics, health care, industry, and military
deployment [35, 37]. These systems, such as mobile devices (e.g.,
smartphones) and actuation systems (e.g., drones), rely on inertial
sensors (i.e., accelerometers and gyroscopes) to identify motion
states and make actuation decisions. As the increasing popularity of
motion-driven applications, inertial sensors play integral roles [1].

Unfortunately, these inertial sensors have been reported to be vul-
nerable to acoustic interference with a specific frequency, namely,
natural frequency [18, 19, 34, 51, 63, 75, 76]. With this property,
attackers can disturb the operation of target systems. For example,
a drone would crash under ultrasonic interference [63]. Even worse,
existing countermeasures to those attacks, e.g., acoustic isolation
[17, 64], seem ineffective in an embedded environment [71].

With the above effect, attackers will naturally develop more
strategical attacks to maliciously control CPSs. State-of-the-art
(SOTA) research has proposed to deliberately modulate acoustic
signals [70, 71], instead of denial of service (DoS) attacks via disor-
dered noise [63, 75]. However, the potential of such sophisticated
attacks is not well studied due to the limited attacking scopes and
scenarios targeted by existing approaches. First, existing approaches
merely focus on single-axis inertial sensors. These targets’ trajec-
tories are restricted in the simplest motion mode, i.e., moving along
ONE direction for an accelerometer or around ONE axis in a plane
for a gyroscope. Second, existing research only involves stationary
targets and ignores the influence of motion. In real-world scenarios,
however, the systems’ motion mode would be more complex. For
example, a drone could fly with six degrees of freedom, consisting
of three-dimensional linear motion and rotation. Therefore, besides
the lack of effective defense, the threat level of such attacks is still
unclear and not fully investigated. It boils down to a key problem: to
what degree acoustic transduction attacks can affect CPSs in practice.

Answering this question is difficult because it remains challeng-
ing to realize the strategical acoustic transduction attack in real
CPS systems, e.g., those with multiple-degree-of-freedom (MDOF).
When extended from the single-axis to the multi-axis, i.e., injecting
desired components of false signals into multiple axes respectively,
the attack seems only to be able to disturb the target, instead of
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Figure 1: Acoustic transduction attacks aim at control over
CPSs by spoofing inertial sensors.

freely controlling its movement according to the attacker’s desire.
This is because the injection on one axis would influence the com-
ponents on other axes [25]. Thus, existing attacking approaches
[70, 71] cannot guarantee to yield desired output on each axis of
inertial sensors. As a result, the attackers cannot accurately control
the target’s orientation. Recalling the example of a drone, attackers
want to tamper with the drone’s yaw angle to modify its trajectory,
but it may crash due to unexpectedly injected rolling or pitching. To
fully understand the ability of attackers to real CPSs, we investigate
the distribution of false signals in multi-axis sensors and leverage
their spatial features for enabling stable adversarial controls. We
extend the scope of acoustic transduction attacks to the multi-axis
inertial sensors so as to cover commonly-seen MDOF systems, as
illustrated in Fig. 1. In this way, we realize a sophisticated attack,
namely KITE, which effectively controls drone-like systems.

To make the attack more realistic, we further consider a very
common case, in which the target is moving. In this case, a slight
distance variation between the malicious acoustic source and the
moving target leads to nontrivial phase fluctuation which distorts
false signals significantly. Moreover, motion signals may couplewith
false signals, producing abundant noise. The impacts of the attacks
seem to be constrained against moving systems. The threat level of
such attacks might be badly underestimated while their potential
has not been fully dug. We realize remote attacks on moving targets
with single-axis sensors. Furthermore, we explore the possibility
of spoofing multi-axis sensors under the motion influence, based
on our observation that transduction attacks are effective using
acoustics that travels through solid. In many cases, there exists a
possibility that attackers can perform a one-shot physical contact
with target systems. For example, attackers can stealthily place a
malicious unit under a mask of legal accessories (e.g., protective
shells [23]). For such attacking scenarios, we design a malicious
unit and enable adversarial control over moving systems.

Combining the above efforts together, we thoroughly display
the practical threat of acoustic transduction attack. We redefine
the threat model to make attackers more realistic and propose
a novel method of acoustic modulation. Note that we adopt the
identical attackers’ abilities to existing work [30, 63, 70, 71] without
any enhancement. Our method involves accurate frequency and
phase estimation. It supports a stable and controllable injection
(with identical effect to the attacks in [70]). In particular, we realize
the automatic offset compensation, without which false signals
would distort [25, 71] and the attack’s effect would be constrained.
In comparison, existing approaches [70, 71] merely work in ideal

or well-controlled conditions (i.e., without sampling rate drifts),
which are rare in reality. As a result, previous acoustic transduction
attacks can hardly be performed on real IoT devices. In KITE, we
propose a novel acoustic modulation method, which allows stable
false injections, free from the tight constraints of no sampling rate
drift. With this method, KITE allows the attackers to control the
speed and orientation of a drone-like target. To our best knowledge,
we are the first to accomplish adversarial control over moving
targets using acoustic transduction attacks. Extensive evaluations
demonstrate the effectiveness of KITE when attacking commercial
devices, including a drone with the most popular autopilot (i.e.,
Pixhawk 4).

Our contribution can be summarized as follows:

• We perform a comprehensive analysis on practical threats to
CPSs from acoustic transduction attacks. We extend the attack
surface to MDOF systems, e.g., drones.

• We propose a new acoustic modulation method to manipulate the
injected false signals as the attackers expect. By fully exploiting
acoustic attacks, KITE is able to hijack the target CPSs using
stable signal injections. This reflects the real risk of malicious
control, which is underestimated in prior research.

• Wemodel the response of moving systems under acoustics, which
has not been studied in the literature. Accordingly, we launch
KITE for the adversarial control in a more common scenario
involving moving systems.

2 INERTIAL SENSORS
Inertial sensors comprise accelerometers for observing linear accel-
eration and gyroscopes for detecting angular velocity. They share
a similar damping structure [5, 41]. The structure is composed of
a movable seismic mass connecting with springs and capacitor
electrodes. In an accelerometer, the linear acceleration causes the
displacement according to Hooke’s law. Then ,the displacement
is converted into an electrical signal due to the proportional ca-
pacitance change. In a gyroscope, the angular velocity induces the
Coriolis acceleration [31]. Similar to the process in an accelerome-
ter, the Coriolis acceleration is transduced into an electrical signal.
After amplification, filtering, and sampling, these motion-related
electrical signals are transformed into digital signals. They jointly
provide control systems with real-time inertial information.

Unfortunately, inertial sensors are sensitive to acoustic injections
due to their damping structure and resonant features [18, 34, 76].
The resonance effect would occur when external signals’ frequency
matches or approaches the sensor’s natural frequency. These nat-
ural frequencies usually fall into the acoustic band, about 0∼10
kHz for accelerometers and 18∼30 kHz for gyroscopes. Such a band
is covered by speakers or transducers that are available to attack-
ers. Accordingly, researchers pursue not only DoS attacks that dis-
turb inertial sensors’ operation and induce breakdowns or crashes
[23, 63, 75], but also adversarial control on CPSs [70, 71]. These at-
tacks succeed inmanipulating stationary targets, e.g., self-balancing
human transporters, self-balancing robots, and smartphones. They
can also be applied to interfere in camera or computer vision based
object detection systems by spoofing inertial sensors of image sta-
bilizers [30]. However, SOTA attacks either select a target with a
single-axis sensor or care only one axis of a multi-axis sensor.
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Figure 2: Threats of the proposed attacks.

3 THREAT ANALYSIS
We detail possible attack scenarios to investigate latent threats from
acoustic transduction attacks. To make attackers more realistic, we
refine their capability and attack means.

3.1 Attack Scenarios
We divide possible attack scenarios into 2×2 types, corresponding
to the target systems’ degree of freedom and motion state.

3.1.1 Single- vs. multi-axis sensors. Single-axis sensors only sup-
port single degree of freedom along or around one axis (represented
by the obliquity sensor in a self-balancing robot [71]). These sys-
tems can only travel forth/back, rotate around one axis in a plane, or
move in the pattern of combining the former two. Such systems are
merely embedded with single-axis accelerometers, gyroscopes, or
both (except redundant axes for anomaly detection, e.g., collisions).

MDOF systems, the more common systems, can move freely in
space. A drone, a representative of those complex systems, is em-
bedded with a three-axis accelerometer and a three-axis gyroscope.
Although Tu et al. [71] test on systems based on multi-axis sensors
(e.g., smartphones and stabilizers), they only care about outputs on
one axis. Because the injection on one axis would influence compo-
nents on the other axes in a multi-axis sensor [25], SOTA attacks
cannot directly organize the desired false signals onto an assigned
axis. They fail in the orientation control on MDOF systems.

3.1.2 Stationary vs.Moving. SOTA attacks conduct control over
targets that are stationary or in a well-balanced status [70, 71],
where inertial readings are originally zero. They respond merely to
the acoustics and just output false signals.

In most cases, target CPSs are not still. The motion of targets is
likely to cause the distance variation between themalicious acoustic
source and the moving target. Such a distance variation will lead to
phase fluctuation and therefore distort false signals. On the other
hand, acoustic injections would never be the only input of inertial
sensors in a moving target. These motion signals may couple with
false signals and introduce additional noise.

3.2 Attackers’ Capability and Patterns
We make the common assumptions [30, 30, 70, 71, 75] to describe
attackers’ capability: (1) they can synthesize any shape of acoustic
signals using appropriate speakers or transducers and use auxiliary
tools (e.g., optical/infrared camera and radar) to recognize the state
(e.g., speed and orientation) of the targets [71] or their remote
controllers [70]; (2) they have adequate knowledge about target
systems, e.g., natural frequencies, and analyze the behavior of a
device with the identical model in advance; (3) they cannot hack
into target systems invasively because most CPSs prohibit such
access rigorously without users’ permission [4, 33].
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Figure 3: Sampling rate drifts are common in inertial sensors
among COTS devices.

In reality, attackers would take various means to conduct attacks.
We divide attackers’ scope into two levels to cover most of possible
non-invasive attack patterns as follows.
• Remote Attack. Attackers emit acoustic signals using nearby mali-
cious sources to conduct remote transduction attacks. This can be
done by playing sounds from speakers approaching the targets
[71], or via means of tricking the users into visiting an email or
a web page that auto-plays malicious audios [70].

• Touch-based Attack. Attackers afford the one-shot physical con-
tact but they cannot physically alter the hardware. Neither can
they directly access normodify the inertial sensors. They can only
attach a paster-like malicious acoustic transducer to the shell of
target systems. For example, attackers can buy off a maintenance
employee to place a malicious transducer under a mask of legal
accessories, or they can attach the transducer by manipulating a
miniature robot that approaches targets only once.

3.3 Attack Stage
Combining the above analysis, we exploit the full potential of acous-
tic transduction attacks, as illustrated in Fig. 2. We first design an
acoustic modulation for the stable injection (see Sec.4) with a con-
trollable orientation (see Sec.5). We apply the proposed method to
remote attacks for controlling stationary systems with both single-
axis and multi-axis sensors. By investigating the motion influence
(see Sec. 6.1), we extend remote attacks into moving systems with
single-axis sensors while remote attacks merely pose DoS on the
multi-axis under the impact of motion (see Sec.6.2). Against the
most challenging targets, MDOF ones, we adopt the touch-based
attacks for adversarial control (See Sec. 6.3).

4 ACOUSTIC MODULATION
We model the resonant characteristics of stationary inertial sensors
under acoustic injections. Accordingly, we address the signal distor-
tion caused by frequency offset and propose an acoustic modulation
method to stably inject false signals.

4.1 Resonant Characteristic Modeling
Inertial sensors suffer from acoustic interference, due to the inner
damping structure. We quantitatively model the resonant character-
istics for the fine-grained modulation of malicious acoustic signals.
We assume a malicious acoustic signal that resonates with an iner-
tial sensor with the natural frequency 𝜔𝑛 = 2𝜋 𝑓𝑛 . The signal exerts
an oscillating pressure force 𝑭 = 𝐹0𝑠𝑖𝑛 (𝜔𝑟 𝑡), where 𝐹0 is the initial
amplitude and 𝜔𝑟 is the initial frequency. The resonant response in
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Figure 4: Basic idea of the proposed acoustic modulation.

one axis of the sensor [25, 68] is described as follows,

𝑅(𝑡) = 𝐴𝑟 cos(𝜔𝑟 𝑡 + 𝜑𝑟 ), (1)

where 𝐴𝑟 = −𝑎𝑝𝑎𝑟 𝐹0 is the overall amplitude, 𝑎𝑝 and 𝑎𝑟 are the
constant gain coefficient during the analog process and resonance.
Resonance introduces a phase lag 𝜑𝑟 ,

𝜑𝑟 = arctan
2b𝜔𝑛𝜔𝑟

𝜔𝑛
2 − 𝜔𝑟

2 , (2)

where b is the constant damping ratio. For a given sensor, 𝑎𝑟 and
𝜑𝑟 depend solely upon the injected frequency [68].

As the natural frequency typically exceeds the sampling rate in
the analog-to-digital converter (ADC), aliasing migrates the high-
frequency analogy signals into low-frequency digital ones accord-
ing to the Nyquist sampling theory. In an ideal ADC, the sampling
rate 𝐹𝑠 keeps invariant. The injected signals are digitized as follows,

𝑅 [𝑖] = 𝐴𝑟 cos(𝜔𝑑

𝑖

𝐹𝑠
+ 𝜑𝑟 ), (𝑖 ∈ N) (3)

where 𝜔𝑑 is the frequency of digital injected signals in the target
sensor, subject to the 𝐹𝑠 as follows,

𝜔𝑑 = 𝜔𝑟 − 2𝜋𝑛𝐹𝑠, ( |𝜔𝑑 | < 𝜋𝐹𝑠, 𝑛 ∈ N). (4)

Unfortunately, the sampling interval fails to keep constant. In-
stead, it drifts randomly within a range [8, 71]. Such drifts lead to
unpredictable frequency offset, where 𝜔∗

𝑑
= 𝜔𝑟 − 2𝜋𝑛(𝐹𝑠 +Δ𝐹𝑠) re-

places𝜔𝑑 in Eq. 3. Therefore, false signals are significantly distorted
and the attack is hard to perform.

We experimentally corroborate the randomness and universality
of sampling rate drifts. We recruit seven volunteers1. Volunteers
carry their smartphones as usual. These smartphones carry various
modes of inertial sensors, including ICM-20690, BMI160, LSM6DSO,
and the like. A third party application records the sampling rates
of internal inertial sensors in these smartphones continuously for
two weeks with the initialized sampling rate of 50 Hz. Results show
that drift is common among inertial sensors in commercial off-the-
shelf (COTS) devices with a range of 0.3 Hz. Among them, the
Google Pixel 4 performs worst. Its sampling rate in the accelerome-
ter ranges from 49.9 Hz to 50.1 Hz, and that in the gyroscope drifts
up to 50.2 Hz. Even in the HUAWEI P40, the sampling rate changes
intermittently. Because of the amplification effect [71], a slight drift
might cause serious signal distortion.

1All experiments in this paper have obtained IRB approval. We have informed volun-
teers of the experiment purposes. Here, these data are merely used for the statistic on
sampling rates, without any threat to privacy.

4.2 Stable and Controllable Injections
In pursuit of adversarial control, we modulate the acoustic signal
by modifying its initial amplitude and phase. We leverage the unal-
terable characteristics to solve the problem of distortion caused by
frequency offset and enable stable injections.

Goal. Attackers aim at a stable injection (i.e., constant outputs
[70]) and then adjust it to desired waveforms.

Challenge. Frequency offset caused by the sampling rate drift
[25, 71] would distort injections and degrade the attack effect into
DoS. It is a challenge to compensate the unpredictable and random
offset.

SOTA approaches. Existing approaches, e.g.,WALNUT [70] and
Poltergeist [30] set 𝐴𝑟 = Γ(𝑡) and 𝜔𝑟 = 2𝜋𝑛𝐹𝑠 in Eq. 3. Therefore,
they obtain a stable direct-current (DC) bias where 𝜔𝑑 = 0. How-
ever, such treatments would be significantly distorted by frequency
offset [71]. Or they may raise acoustic intensity to saturate the
inner amplifier, yet produce non-adjustable outputs under audible
injections with deafening volume.

Tu et al. [71] pace the acoustic phase (to be either always posi-
tive or always negative) to avoid the adverse impact of frequency
offset. Although taking the initiative in spoofing gyroscopes in real
systems, they merely obtain an accumulative error of the angular
measurement, and thus, fail to produce stable false angular velocity.

Our solution. It has been proved that each amplitude of digital
false signals can be modified independently by modulating acoustic
amplitudes [71]. We observe that the final phases are also indepen-
dently adjustable. Accordingly, we reshape the envelope of acoustic
by carrying the reciprocal of the digital signal as follows,

𝐹 (𝑡) = Γ(𝑡)
cos(𝜔𝑑𝑡 + 𝜑𝑟 )

sin(𝜔𝑟 𝑡) . (5)

Here, the additional phase 𝜑𝑟 is used to compensate for the phase
lag introduced by resonance and two cosine items will be equal
after sampling as Eq. 3, with the item Γ(𝑡) remained. Therefore,
attackers are qualified to manipulate target sensors’ readings into
any designated waveform. Our basic idea is illustrated in Fig. 4.
Under unmodulated acoustics, the digitized injected signals vary
sinusoidally, with a tiny accumulative signal as shown in Fig. 4(a).
Using our modulation method, we can obtain a constant digitized
injected signal as presented in Fig. 4(b). By adjusting the acoustic
intensity as illustrated in Fig. 4(c), we can generate false signals
with arbitrary waveforms following the attackers’ expectations. To
achieve this, a fundamental issue is to estimate 𝜔𝑑 and 𝜑𝑟 .

4.2.1 Frequency Determination and Offset Compensation. It is dif-
ficult to calculate 𝜔𝑑 due to the lack of knowledge about targets’
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sampling rate drifts. We exploit an unalterable frequency relation-
ship to calculate𝜔𝑑 and eliminate the influence of frequency offsets.

Frequency Difference. We observe that the frequency differ-
ence between acoustic signals also migrates into the low-frequency
band after being digitized. To be specific, suppose that two signals
of 𝜔𝑟𝑖 (𝑖 = 1, 2, 𝜔𝑟𝑖 = 2𝜋𝑛𝐹𝑠 + 𝜔𝑑𝑖 ) can resonate with the target
sensor. We have the following unalterable frequency relationship,

𝜔𝑟1 − 𝜔𝑟2 = 𝜔𝑑1 − 𝜔𝑑2 . (6)

Offset compensation. This difference-based technique still
works even if the sampling rate is drifting. Attackers can obtain an
appropriate𝜔𝑟1 with𝜔𝑑1 = 0 by analyzing the responses of a device
of the identical model under ultrasonic resonance in advance. Dur-
ing a real attack, the actual digitized frequency is 𝜔∗

𝑑1 = −𝑛𝑝Δ𝐹𝑠
due to the sampling drift. The drift brings about identical offsets
in terms of both 𝜔𝑟1 and 𝜔𝑟2. Under the guidance of Eq. 6, we can
compensate the frequency offset by adjusting the frequency as,

𝜔𝑟2 = 𝜔𝑟1 + 𝜔∗
𝑑1 . (7)

Therefore, we have 𝜔∗
𝑑2 = 0 and the distortions caused by offsets

are eliminated. Here the acoustic signal of 𝜔𝑟1 serves as a reference
for the offset compensation. In practical attacks, the offset 𝜔∗

𝑑1 can
be measured by a remote camera or an attached malicious sensor.

4.2.2 Phase Estimation. Little existing literature notices that the
phase under resonance lags significantly behind the original one,
and the quantitative analysis on such a lag is also scarcely seen.
Due to unknown parameters (i.e., b and 𝜔𝑛 in Eq. 2), we cannot
obtain 𝜑𝑟 directly. Instead, we exploit the resonant phase-frequency
characteristics to estimate the exact phase.

With the derivative of 𝜑𝑟 in Eq. 2, we obtain

𝜑 ′𝑟 =
2b (1 + ( 𝜔𝑟

𝜔𝑛
)2)

(1 − ( 𝜔𝑟

𝜔𝑛
)2)2 + (2b 𝜔𝑟

𝜔𝑛
)2

≈ 1/b, (8)

where𝜔𝑟 approaches𝜔𝑛 and |𝜔𝑟 −𝜔𝑛 | ≪ 𝜔𝑛 under resonance [25],
𝜔𝑟

𝜔𝑛
≈ 1, and 𝜑 ′𝑟 can be approximately recognized as a constant. It

reveals that the phase lag 𝜑𝑟 has a positive linear correlation with
acoustic frequency 𝜔𝑟 . 𝜑 ′𝑟 can be measured on sensors of the identi-
cal mode in advance. Considering that the reference signal supplies
the feedback about both 𝜔𝑑1 and 𝜑𝑟1, we can reckon malicious
acoustic signals’ phase lag 𝜑𝑟2 as follows,

𝜑𝑟2 = 𝜑𝑟1 + 𝜑 ′𝑟 (𝜔𝑑2 − 𝜔𝑑1). (9)

In practice, source speakers cannot support an excessive 𝐴𝑟 [𝑖].
Otherwise, the acoustic signals will distort. To mitigate the ampli-
tude fluctuation, attackers should guarantee

| cos(𝜔𝑑𝑖/𝐹𝑠 + 𝜑𝑟 + 𝜑0 [𝑖]) | > 𝜖, (0 < 𝜖 < 1), (10)

where 𝜖 is a constant, satisfying that 𝛾
𝜖 is restricted within the

output range of speakers. To meet this condition, we repetitively
pace the acoustic initial phase as follows,

𝜑0 (𝑡) =
{
−𝜑𝑟 |𝑡 − 𝑘𝜋

2𝜋𝜔𝑑
| < 𝑎𝑟𝑐𝑐𝑜𝑠𝜖

2𝜋𝜔𝑑
,

𝜋 − 2 arccos 𝜖 − 𝜑𝑟 Others.
(11)

In short, we modulate the malicious acoustic signals as

𝐹 (𝑡) = Γ(𝑡)
cos(𝜔𝑑𝑡 + 𝜑𝑎 + 𝜑0 (𝑡))

sin(2𝜋𝜔𝑟 𝑡 + 𝜑0 (𝑡)) . (12)
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Figure 5: Spelling a ‘KITE’ trajectory by manipulating a
BMI160 IMU using our proposed method.

Thus, we realize the stable and controllable injection Γ(𝑡). Figure 5
illustrates the threat from attacks adopting our proposed acoustic
modulation method in manipulating a sensor’s readings. Here we
take the identical assumptions in SOTA attacks [30, 70, 71] without
modifying attackers’ capability. Moreover, such an injection could
be achieved in both remote and touch-based attacks.

5 ORIENTATION CONTROL
Besides the single-axis systems, MDOF systems are widely used in
real-world scenarios. The representatives include smartphones and
drones, on which SOTA attacks barely investigate the potential of
transduction attacks. With a full investigation into the distribution
of false signals among axes under acoustic interference, we expand
this attack surface into multi-axis sensors.

Goal. To completely control target MDOF systems, attackers
should carefully arrange and inject appropriate false signals into
each axis of the inner multi-axis inertial sensors. Therefore, target
MDOF systems would face and go along an assigned orientation
without any crash according to attackers’ expectation.

Challenge. Injections on one axis would disturb those on other
axes, because resonance would occur simultaneously on multiple
axes in a sensor [25]. However, SOTA attacks [70, 71] ignore this
issue, which still remains an open problem: how to coordinate com-
ponents of false signals among multiple axes accurately?

Distribution among axes. Acoustic pressure force (vector)
determines the false signals’ amplitude and orientation [24]. We
observe that in general the energy distribution of components in
different axes is in line with the ray from an acoustic source to the
target. One of our preliminary studies validates the directionality
of such acoustic transduction attacks against inertial sensors. A
speaker (JBL 750T, 30 W) is put 2 m away from a target sensor (a
BMI055 chip) along each axis respectively. The mainly affected axes
of sources from different orientations are illustrated in Fig. 6. That
is, an acoustic source would influence the axis in an accelerometer
that is parallel to the direction 𝒆𝐹 from the acoustic source to the
target, and the axis vertical to 𝒆𝐹 in a gyroscope. The reason lies in
the damping structure in inertial sensors [5, 41]. Imagine that an
acoustic source is placed along the X-axis of an inertial sensor as
shown in Fig. 6(a). It just interferes in the x-axial acceleration and
the yaw angular velocity. We conclude the relationships as follows,

𝑹𝑎𝑐𝑐 ∥ 𝒆𝐹 , 𝑹𝑔𝑦𝑟𝑜 ⊥ 𝒆𝐹 , (13)

where 𝑹𝑎𝑐𝑐 is the vector whose elements are the false signals on
respective axes in an accelerometer and 𝑹𝑔𝑦𝑟𝑜 is that in a gyroscope.
In more common cases, 𝒆𝐹 is not parallel to any axis. The influence
of such a source can be decomposed into that of multiple orthogonal
sources along each axis, due to the vector property of acoustics [78].
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(a) (b) (c)
Figure 6: An illustration of affected axes of acoustic sources
along (a) X-axis, (b) Y-axis, and (c) Z-axis.
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(b) Two demonstrations in [71]

Figure 7: Energy distribution among axes. A smaller area
means a better orientation control.

Solution. We utilize multiple acoustic sources to compensate for
the orientation deviation. It is recommended to utilize three sources
that constitute a set of three-dimensional (orthogonal, if possible)
bases. By adjusting each source’s acoustic intensity independently,
false signals follow a given spatial vector with an assigned direction.

We represent energy distributions in the gyroscope of an iPhone 7
in Fig. 7, where attackers aim at generating appropriate false signals
along each axis respectively. Compared with two demonstrations
(Side-Swing and Switching Attacks) conducted on the identical de-
vice in [71], we successfully inject false signals into the target axis
as expected, with little leakage into others. It maintains up to 99.13%
of resonant energy in one desired orientation. In practice, the lo-
cation of the inertial sensor in the target system can be inferred
on a device with the same model as the target or by the aid of the
datasheet beforehand. In addition, the multiple speakers should be
aligned in a non-parallel manner, not necessarily orthogonally. The
angle error keeps below 15° experimentally when the sources are
non-orthogonal. By coordinating false signals using three acoustic
sources, attackers are competent to drive target systems maliciously
into any given orientation.

6 ATTACKS ON MOVING SYSTEMS
It is a common but complex scenario in which target systems are
not stationary. We analyze the impact of targets’ motion using a
mathematical model, to describe the phase fluctuation and coupling
effect quantitatively. Meanwhile, we explore possible threats after
suppressing the influence of motion.

6.1 Motion Influence
Adversarial control over moving systems is an unsettled issue for
acoustic transduction attacks. Motion interference distorts false
signals under acoustic resonance. In this case, the effect of the attack
would be currently constrained to uncontrollable disturbance.

6.1.1 Phase Fluctuation. The movement of a target alters the dis-
tance 𝐿 between it and the sound source. The distance change

provokes a phase fluctuation when acoustics travel in the air. Such
a fluctuation results in the distortion of acoustic signals and atten-
dant resonant responses. We denote the distance variation as Δ𝐿. It
will introduce an additional phase to Eq.3 as follows,

Δ𝜑 =
𝜔𝑟 𝑡Δ𝐿

𝑣
, (14)

where 𝑣 represents the acoustic speed and can be regarded as a
constant. Because of this unexpected phase, the result of Eq. 12 on
a moving target will be distorted, rather than the desired Γ(𝑡). Note
that the motion also distorts false signals in all previous attacks
[30, 70, 71] and limits their effect.

6.1.2 Coupling Effect. In inertial sensors, motion data will over-
lap, or even worse, couple with false signals. The coupling effect
produces a force that introduces additional noise. We carry out the
force analysis on a gyroscope using dynamic equations as follows,

𝑚 ¥𝑦 + 𝑐 ¤𝑦 + 𝑘𝑦 = 𝐴𝑑 sin(𝜔𝑛𝑡) − 2𝑚Ω ¤𝑥 + 𝐹𝑦 sin (𝜔𝑟 𝑡) ,
𝑚 ¥𝑥 + 𝑐 ¤𝑥 + 𝑘𝑥 = 2𝑚Ω ¤𝑦 + 𝐹𝑥 sin (𝜔𝑟 𝑡) ,

(15)

where 𝑦 and 𝑥 are the driving and sensing displacements in the
damping structure inside the gyroscope, 𝑘 and𝑚 are constants, 𝐴𝑑

is the amplitude of driving force at the frequency 𝜔𝑛 =
√︁
𝑘/𝑚, 𝐹𝑥

and 𝐹𝑦 are components of the acoustic pressure 𝐹0 on the driving
and sensing directions, and Ω is the angular velocity around Z-axis
to be measured. The angular velocity Ω will introduce the Coriolis
forces −2𝑚Ω ¤𝑥 and 2𝑚Ω ¤𝑦 into the sensing and driving directions
respectively. Hence, we obtain the sensor’s readings as follows,

𝑥 (𝑡) =2𝑚𝐴𝑑Ω

𝜔𝑛𝑐
2 cos (𝜔𝑛𝑡) − 𝑎𝑟 𝐹𝑥 cos (𝜔𝑟 𝑡 + 𝜑𝑟 )

+ 2𝑚𝑎2𝑟 𝐹𝑦Ω𝜔𝑟 cos (𝜔𝑛𝑡 + 𝜑𝑟 ).
(16)

Here, the first term is the displacement that is proportional to the
true angular velocity Ω; the second term is the false displacement
triggered by the direct action of ultrasound on the sensing direction.
Moreover, the acoustic action on the driving direction, coupled with
the Coriolis force, is projected to the sensing direction as the third
term. It would act as the noise and distort the false signals, which
is jointly influenced by the system’s motion and the component of
acoustic pressure (that is related to the relative position from the
target system to the acoustic source).

In addition, the movement of targets would result in the Doppler
frequency offset. Nevertheless, this problem can be solved using
the offset compensation method proposed in Sec. 4.2.1.

6.2 Remote Attacks
We propose a remote attack for the motion influence suppression
and explore this method’s limitations against moving MDOF sys-
tems. Advanced methods using auxiliary tools (e.g., optical/infrared
camera and radar) enable accurate and real-time distance measure-
ment. Therefore, attackers could measure Δ𝐿 to compensate for the
phase fluctuation. In KITE, we adopt MVSCRF [83] due to its low
measurement error (of below 1 mm in the original paper).

Then, we discuss the solution in terms of systems embedded with
single- and multi-axis sensors respectively. The movement patterns
of targets that carry single-axis sensors are usually simple, and thus
attackers can easily predict the motion signals. By arranging mali-
cious sources at appropriate places and aligning acoustics beams
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Figure 8: Experimental setup for the feasibility study of
acoustic transduction attacks via (a) single-layer and (b)
multi-layer (overlapping) solid media.

Table 1: Maximum Attack Distance on Different Materials

Material Size Distance†

Aluminium metal
1 m× 0.5 m× 2 mm 1.12 m +
1 m× 0.5 m× 5 mm 1.12 m +
1 m× 0.5 m× 7 mm 1.12 m +

Copper metal 1 m × 0.1 m × 0.2 mm 1.01 m +
Plastic 0.75 m × 0.7 m × 2 mm 1.02 m +
Glass 0.9m × 0.45 m × 10 mm 1.01 m +

Fiberboard 0.75 m × 0.7 m × 10 mm 1.03 m +
Log table 1.2 m × 0.75 m × 15 mm 0.32 m
Aluminium (2 mm)+Aluminium (5 mm) 1.12 m +

Aluminium (2 mm) overlaps Aluminium (5 mm) 1.50 m +
Aluminium (7 mm)+Copper 1.12 m +

Aluminium (7 mm) overlaps Plastic 1.25 m +
Aluminium (7 mm) overlaps Fiberboard 1.25 m +
Aluminium (7 mm)+Plastic+Fiberboard 0.65 m

†: ‘+’ means that acoustics can affect target smartphones and such attacks remain at
least as effective over a potentially longer distance via solid media.

along the target’s trajectory, attackers can easily eliminate the cou-
pling effect, i.e., 𝐹𝑦 in Eq. 16. Hence, they continue manipulating
those targets remotely, with evaluations in Sec. 7.3.

However, attackers cannot predict the complex movement of
an MDOF system, so they fail to align the acoustics with the tar-
get’s trajectory. Therefore, when attacking moving targets that are
embedded with multi-axis sensors, current remote attacks merely
act as DoS because existing methods fail in remote and real-time
motion description on the centimeter scale. Our experimental re-
sults in Sec. 7.3.1 also demonstrate the limitation of remote attack
on MDOF systems. In addition, camera-based methods can be in-
fluenced when there exists occlusion or the lightning condition
is poor. Therefore, the application scenarios of remote attack are
limited. In short, remote attacks cannot apply to manipulation of
such systems that move freely in space.

6.3 Touch-based Attacks
In many cases, it is probable for attackers to have the one-shot
physical contact with target systems. Therefore, they can perform
a touch-based attack by attaching a paster-like malicious unit on
targets, especially MDOF ones, so that they can continue malicious
control on moving target. In the following, we first verify the feasi-
bility of adopting acoustic propagation that travels in solid media
to enable touch-based attacks. We then present our design of a
malicious unit and its ability of attacking realistic systems.

Figure 9: Proof-of-concept of the malicious unit (PCB board
prototype) for touch-based attacks.

6.3.1 Acoustic attacks travelling in solid. Acoustic guided waves
can propagate in solid media [78, 85]. Inspired by this, we divert
acoustic interference into solid media (e.g., target systems’ shells)
by a piezoelectric (PZT) transducer instead of via air by speakers.
A pilot study is launched to investigate its feasibility.

As shown in Fig. 8, we stick a miniature PZT disc (with 35 mm
diameter and 0.3 mm thickness) to the underside of an aluminium
metal plate (with 1 m × 0.5 m × 2 mm). A signal generator supplies
sinusoidal signals that will be converted to acoustic guided waves
by the PZT disc. The frequency response of the PZT disc ranges
from 20 Hz to 40 kHz. The power consumption is about 55 `W. A
smartphone (Samsung Galaxy S8) is placed at an arbitrary position
on the plate. Its accelerometer generates false readings under the
acoustic interference of 6.5 kHz. Similarly, the internal gyroscope
resonates with the 19.5 kHz ultrasound.

We repeat the above experiments on other materials, including
copper metal, plastic (polythene), wood (fiberboard and log table),
and glass, which have covered most of common materials used in
COTS CPSs [1]. The target devices still suffer from such acoustic
injection via these solid media. Moreover, acoustic transduction
attacks can cross multilayered media if they wholly or partially
overlap as Fig. 8(b) shows. The maximum attack ranges via these
media of various thicknesses are over 1 m, as listed in Tab. 1. Par-
ticularly, such attacks are powerful enough to affect devices within
32 cm through a wooden table board (15 mm thickness).

Compared with the ultrasound speakers used in the prior litera-
ture [63, 71, 75], the PZT transducers are cheap and much smaller in
size. They can be covertly adhered to the target’s shell for acoustic
transduction attacks. Malicious acoustic signals are primarily local-
ized in solid media, with little leakage into the air. Thus, attacks
are conducted without victims’ attention, with the evaluation on
human inaudibility in Sec. 7.6.

6.3.2 Malicious unit design. With the purpose of suppressing mo-
tion interference, we design a malicious unit that adheres to the
target stealthily. It facilitates touch-based attacks that propagate
malicious acoustics via solid media.

The malicious unit carries a control center, a malicious inertial
sensor, and PZT transducers. The control center supplies acoustic
signals to the PZT transducer that emits sound waves through solid
media (i.e., the shell and connections). In this case, the relative orien-
tation and distance are unchangeable, and thus, phase fluctuations
in Eq.14 are suppressed. The malicious inertial sensor measures the
motion state of the target system (i.e. Ω in Eq. 16), and thus the
control center could reduce the noise caused by the coupling effect.
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Figure 10: Experimental setups.

We integrate the touch-based attack into a printed circuit board
(PCB) prototype as the malicious unit, as shown in Fig. 9. It carries
an STM32-F407VET6 chip [65] and a Raspberry Pi Zero W [54] as
the control center, a digital to analog converter (DAC902 [10]), a
BMI160 inertial sensor [7] (here the on-board sensor is exchange-
able and we choose one with resonant frequencies different from
the targets to avoid being affected by the attacker itself), and an on-
board battery (12 V, 1500 mA). It drives PZT discs that are attached
closely onto targets to emit malicious acoustic signals. The size of
the whole board is 13 cm in length and 7 cm in width. Note that this
prototype is a proof-of-concept (without elaborated integration).
In real implementation, the size of such a unit will be miniaturized
into an extremely small (paster-like) size (e.g., within 4×4 cm2) after
customized manufacture. It costs merely about $26, without the
need of expensive signal generators and loudspeakers, which are
necessary in SOTA attacks [30, 70, 71].

In conclusion, we consider all possible attack scenarios and as-
sess the practical threat level from transduction attacks. Remote at-
tacks can threaten stationary targets and moving single-axis sensor
embedded systems, while touch-based attacks cover all scenarios.

7 EVALUATION
We conduct remote and touch-based attacks on COTS devices and
evaluate their effectiveness. Two end-to-end attacks demonstrate
its attack effects by manipulating the route of a drone embedded
in the most popular autopilot (Pixhawk 4) and imitating gaits to
spoof the pedometer APP (‘Pacer’) on smartphones.

7.1 Experiment Setup
Target systems. We first carry out experiments on a BMI055 chip
that is widely deployed in COTS CPSs (e.g., Oculus Rift and Pix-
hawk 4) for directly gathering the raw inertial data for quantitative
analysis. A BMI055 chip contains a three-axis accelerometer and a
three-axis gyroscope.We connect an Arduino board (UNOR3) to the
sensor chip and samples its outputs at 50 Hz. Then we conduct KITE
on COTS devices including self-balancing robots, smartphones, and
drones, summarized in Sec. 7.5. In particular, we attack a quad-rotor
drone (ATG-850 RTK) that carries Pixhawk 4, the most popular au-
topilot. It runs the open source PX4 controller [50] and carries two
inertial measurement units, BMI055 and MPU-6000, which are both
vulnerable. Here, we mainly evaluate the attacks on its BMI055
and the MPU-6000 performs similarly. The outputs of the BMI055
sensor are recorded locally and read by the upper computer after
each experiment. Sampling rates are 50 Hz by default.

Acoustic source. In remote attacks, we use JBL 750T speakers
[28] as the remote malicious acoustic source. Supplied by a 30 W
power amplifier, it can emit acoustics from 20 Hz to 48 kHz with a
peak intensity of 76 dB. A signal generator NI VituralBench 8012
[47], connected to an upper computer, modulates the signals and

Table 2: Real Motion vs. False Signals (◦/s)

Input Median Mean Standard
deviation Range

Idle 0◦/s -0.025 -0.006 0.071 ±0.155
Real 2◦/s 2.006 1.985 0.066 ±0.150

False 2◦/s 2.013 2.031 0.077 ±0.160
-2◦/s -1.999 -1.976 0.085 ±0.210
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Figure 11: Amplitude control.

drives the speaker. In touch-based attacks, we exploit the PCB
prototype in Fig. 9 as the malicious devices for attacks.

Placement. In remote attacks, the JBL 750T speaker is placed 2
m away from target systems.We attack stationary targets (including
inertial sensor chips and smartphones) in a quiet room with 46.6
dB ambient noise and moving targets (including a MITU robot and
drones) in an open space with 55.9 dB ambient noise, as shown in
Fig. 10. For the orientation control, we place three speakers centered
around target sensors. In touch-based attacks, the PCB prototype
of the malicious unit is attached to target devices’ shells.

Metric. We adopt statistical characteristics including median,
mean, standard deviation, and range to describe the performance on
injecting assigned false signal in terms of amplitude. The orientation
control is evaluated by the angle error denoted as Δ𝜗 . It can be
calculated by Δ𝜗 = arccos(𝒆𝑡 · 𝒆𝑜 ), where 𝒆𝑡 is the unit direction
vector of the target false signal and 𝒆𝑜 is that of the achieved one.

7.2 Overall Performance
We evaluate KITE in injecting desired false signals with a control-
lable orientation on stationary targets.

7.2.1 Amplitude. We manage assigned injections with arbitrary
amplitude at will. Inmost cases, a CPS rotates at a speedwithin 30◦/s
and accelerates within 0.5 m/s2, and the speed of human activities is
typically in this range. As representatives, we inject false signals of
1, 2, 3, and 4◦/s into the yaw-axis of the gyroscope in target BMI055
chip. The setup is shown in Fig. 10(a). We first list the statistical
characteristics of real motion and false signals under remote attacks
in Tab. 2. Compared with the real motion where the target rotates
at 2◦/s, the false signals present insignificantly different results,
only with a slight rise in terms of standard deviation. Fig. 11 further
demonstrates the precision of our proposed acoustic modulation on
diverse values. It obtains a low error with the standard deviation of
about 0.08◦/s on average. Such deviation would not increase with
the amplitude of false signals. It peaks at 0.091◦/s under the injection
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Figure 12: Orientation control over a drone. A smaller Δ𝜗
represents a better performance.

of 2◦/s, while its minimum value just maintains 0.069◦/s with tiny
difference from the real motion (about 0.07◦/s on average). Similarly,
we repeat experiments on the X-axis of the accelerometer and find
the average standard deviation is below 0.01 m/s2. We manage to
inject false signals ranging within ±50◦/s into gyroscopes and ones
ranging within ±0.8 m/s2 into accelerometers. Accordingly, our
attacks can induce any waveform and deceive the target system
into following our preset trajectory. We adjust the sensor sampling
rate as 5 Hz, 16.7 Hz, 100 Hz, and 200 Hz, which are typical values [4]
and maintain the standard deviation below 0.09◦/s and 0.012 m/s2.

We further validate the effectiveness on a self-balancing robot,
MITU robot [43], and aim at its single-axis gyroscope. The ro-
bot’s embedded gyroscope is employed to detect and measure tilts
(forward or backward) and accordingly the robot is actuated to
move (backward or forward respectively according to the negative
feedback mechanism). Using modulated acoustic signals, the robot
would go along the direction following the false angle.

7.2.2 Orientation. We take orientation control over a stationary
drone (ATG-850 RTK) remotely, as shown in Fig. 10(b). The stan-
dard deviation of false signal is below 0.1◦/s. The thermodynamic
diagram in Fig. 12 shows angle errors, where the other half shares
a similar distribution. We find Δ𝜗 is below 9◦ globally, and it does
not exceed 5◦ in over 70% of orientations. In some special cases, the
location of acoustic sources may fail to be orthogonal. Δ𝜗 still keeps
below 15◦ experimentally when the sources are non-orthogonal.
Note that these sources should avoid being parallel, otherwise they
cannot support the orientation control. Moreover, the attacks are
still able to manipulate the yaw angle and the X-axial acceleration
using only one acoustic source as illustrated in Fig. 6(a). It can
command targets like unmanned cars (e.g., Baidu Apollo D-KIT) to
alter orientation and speed up forward or backward.

The touch-based attack achieves similar performances. It main-
tains a low standard deviation of 0.071◦/s in gyroscope and 0.009
m/s2 in an accelerometer on average and small Δ𝜗 within 7.8◦.

7.3 Robustness against Movement
We follow the proposed solutions in Sec. 6.1 to evaluate acoustic
transduction attacks against a moving target.

7.3.1 Robustness of remote attack. We fix a 30W powered JBL 750T
speaker and a camera (Logitech C930e). They are connected to an
upper computer that runs the MVSCRF algorithm [83] on a server
with Intel(R) Xeon(R) Silver 4210R CPU@2.40GHz and two Nvidia

(a) Different injections (b) Different axes

Figure 13: Robustness against motion.

GeForce RTX 3090 to measure the distance to targets and accord-
ingly modify acoustic signals. MVSCRF realizes a low measurement
error of below 2 mm. We place a BMI055 chip on a rotating table
and keep it 2 m away from the speaker. The table rotates centered
around the Z-axis of the BMI055 chip at a speed of 2◦/s by default.

We inject false gyroscope signals of different amplitudes. The
yaw angle velocities are shown in Fig. 13(a). They maintain the low
deviation of 0.2◦/s. In particular, we inject a false signal of -2◦/s to
neutralize real motion. Consequently, the gyroscope outputs zero
and the target system would mistakenly regard itself in a stationary
state. It would not respond to the real motion and lose the ability of
perceiving the physical world. We adjust the rotating speed of the
table from - 4◦/s to 4◦/s at a step of 1◦/s.We inject the corresponding
false signals to neutralize real motion. The output readings keep
0.07◦/s on average with the deviation of below 0.26◦/s. We repeat
the experiments when the target rotates around other axes and
obtain the similar performance with a deviation of 0.2◦/s, as shown
in Fig. 13(b). We further test attacks on a moving MITU robot.
It moves at ±0.1 m/s and ±0.2 m/s or rotates at ±2◦/s and ±5◦/s
respectively at most 3 m away from the speaker. KITE injects a
false signal of 2◦/s successfully, with a deviation of 0.18◦/s.

However, when attackingmoving targets withmulti-axis sensors,
remote attacks merely act as DoS. We conduct experiments on
moving drones including a QQL RC UAV and a DJI Spark UAV.
We cannot avoid the coupling effect and thus drones crash. The
standard deviation of inertial readings in the DJI Spark UAV is
1.31◦/s. By comparison, its standard deviation is approximately 1.45
under unmodulated acoustic injections using the same settings. It
validates that remote attacks cannot apply to manipulating MDOF
systems and frustrates SOTA attacks [70, 71] in practice.

7.3.2 Robustness of touch-based attack. We repeat the above exper-
iments on moving drones using the PCB prototype. The standard
deviations of inertial readings drop down to 0.08◦/s. With touch-
based attacks, we can adjust attitude of target drones without crash,
but also inject false upward or downward accelerations to alter the
target drone’s flying altitude or order it to land or take off.

7.4 Effective Distance of Remote Attack
In remote attacks, the distance is positively correlated with the
power supply of acoustic sources and varies among different tar-
gets due to their diverse sensitivity. We successfully manipulate
readings of a Huawei P40’s gyroscope 10.3 m away and that of the
accelerometer 7.6 m away using a 30 W powered speaker with little
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Table 3: Attack Experiments on COTS Devices‡

Device IMU Model∗ 𝑓𝑛 (kHz)
Gyro. Acc.

ATG-850 RTK drone BS BMI055 24.4 1.45
IS MPU6000 27.0 1.81

Huawei P40 Unknown 19.9 4.6
Huawei P20 Pro IS ICM-20690 20.1 6.7
Samsung S20 Unknown 19.2 19.2
Samsung S8 STM LSM6DSL 19.4 6.5
Google Pixel 4 BS BMI160 23.1 -
Motorola Edge 5 Unknown 27.6 0.1

iPhone 11 Pro Max BS BMI282 24.2 -
OPPO A32 Unknown 28.9 4.7

OPPO Find X2 Unknown 19.7 0.1
Reno 3 Pro STM L2G2IS 39.1 0.1

Redmi K30 Pro BS BMI270 38.9 6.5
MITU robot IS ICM-20690 20.1 6.7

Baidu Apollo D-KIT IS MPU6050 27.5 5.2
EAIBOT N1 UGV M R6093U 27.2 6.5
QQL RC UAV IS IMU3000 27.1 23.0
DJI Spark UAV UnKonwn 23.8 5.5

‡The full list involving 28 COTS devices can be found in [3].
∗BS: Bosch, IS: TDK InvenSense, STM: STMicroelectronics, M: Microinfinity.

increase of the standard deviation (below 0.2◦/s or 0.024 m/s2) and
Δ𝜗 (below 15◦). This distance can be extended to over 13 m using a
speaker powered by 50 W, also a common setting in COTS devices.
Furthermore, better acoustic devices, e.g., professional speakers
with power amplification techniques, could improve the attack
distance to above 37 m [63].

7.5 Diversity of Target Devices
We evaluate our proposed attacks on more real devices equipped
with inertial sensors. All tested devices are susceptible to adver-
sarial control. We present partial results in Tab. 3, with the full
list involving 28 COTS devices and attack demos in [3]. In partic-
ular, we can attack the accelerometer and gyroscope in a system
simultaneously to spoof its controllers. Note that we can test the
devices to measure the natural frequencies without knowledge of
the IMU models. We observe the responses of robots/drones or
inertial readings of smartphones (with zero-permission access [4])
under ultrasound whose frequency sweeps from 100 Hz to 30 kHz
at an interval of 100 Hz first. When a rough range of the resonant
frequency is found, we adjust the interval to 10 Hz and 1 Hz to
determine the exact frequency with the maximum resonance, i.e.,
the natural frequencies. The measurement process is within several
minutes. Moreover, multiple sensors can be measured simultane-
ously. Considering the prior work [30, 63, 70, 71, 75] and our results,
we conclude that KITE could affect most CPSs.

7.6 Inaudibility
Acoustic transduction attacks should avoid being heard by sur-
rounding people in case of being detected and defended against.

7.6.1 Remote attack. Gyroscopes and accelerometers are both vul-
nerable to acoustic interference, but sensitive to different frequency

Table 4: Human Audibility Tests on A Drone

Motion status Acoustic intensity Human
prediction10 cm 5 m

Hanging 109.4 dB 68.7 dB -
Rotating w/o attacks 109.9 dB 71.2 dB 3.29
Rotating w/ attack 109.5 dB 69.9 dB 3.41

bands. Gyroscopes’ natural frequencies typically exceed 19 kHz.
This implies that malicious acoustics aimed at gyroscopes are be-
yond the human hearing [63, 76]. We recruit 22 volunteers aged
from 18 to 45 when remotely attacking gyroscopes of the devices
in Tab. 3. They report being unable to distinguish the existence of
modulated ultrasound except when attacking OPPO Reno 3 Pro
and Redmi K30 Pro. During the attacks on the two devices, the
speakers would induce audible noise of about 18 kHz due to its
poor performance at the high-frequency bands of over 35 kHz. We
believe that using professional acoustic devices can overcome the
fault for additional noise. Conversely, most accelerometers respond
to sounds of below 10 kHz according to Tab. 3. Therefore, mali-
cious sounds emitted from remote sources can be heard by humans.
SOTA attacks aimed at controlling accelerometers [30, 70] alert
surrounding people, unless on some exceptions, e.g., a Samsung
S20, which is also selected as the only target in [30] due to the
embedded accelerometer’s high natural frequency of 19.2 kHz.

7.6.2 Touch-based attack. Touch-based attacks leverage malicious
acoustics that are primarily localized in solid media, with little
leakage into the air. Thus, attacks are covertly conducted without
victims’ attention. We place two microphones 10 cm away from the
PZT disc placed under the 5 mm aluminium metal plate, following
the setting in Fig. 8. The frequency of the attacking signal is 6.5
kHz for the accelerometer and 19 kHz for the gyroscope in the
Samsung Galaxy S8, respectively. We use an NI USB-4431 sound
measuring instrument andGRAS 46AM1/2” CCP free-field standard
microphones for measuring the unweighted sound pressure levels.
The used GRAS 46AM microphone has a wide frequency range
of 3.15 Hz to 31.5 kHz [26]. One microphone directly contacts the
plate, and it measures that sound in solid reaches up to 73.7 dB.
The other hanging in the air measures that sound remains 48.8
dB in a quiet room (46.6 dB). Such acoustic leakage is subtle and
negligible, especially under mechanical noise from target systems.
PZT transducers can also issue ultrasounds beyond the range of
human hearing to attack gyroscopes. Surrounding people barely
perceive such stealthy attacks travelling in the solid.

In short, gyroscopes are more at risk than accelerometers, and
touch-based attacks are stealthier in terms of inaudibility.

7.7 End-to-End Attack Cases Study
We now evaluate the proposed attacks with end-to-end cases on
COTS devices. We conduct the starting attacks on smartphones to
spoof step counts and manipulate a drone.

7.7.1 On smartphones. In smartphones, inertial readings are uti-
lized for navigation services, pedometer applications and the like.
Using the remote attack, we accumulate a false yawing angle of up
to approximately 6.23 rads or -6.19 rads in 1 minute in a Huawei P40,
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Figure 14: Attacks on smartphones.

with few false signals in the pitch nor roll angle. Thus, attackers can
deceive navigation services such that they would misguide users
into wrong routes. Furthermore, we modulate malicious acoustic
signals to produce false gaits. We can adjust these ‘gaits’ at speed of
5 to 55 steps in a minute without any real walking. The comparison
with the inertial readings of gaits from a real user is shown in Fig.
14(a). With no difference from real ones, these false gaits could trick
motion-driven pedometer applications. We register around 3300
steps in 1 hour on a pedometer APP ‘Pacer’, which is one of the
most popular step-counting APPs in Google’s Play. The screenshot
is shown in Fig. 14(b). Here we have not claimed in-app rewards.

7.7.2 On a drone. Unmanned vehicles, e.g., drones, depend on
inertial readings for attitude estimation, autonomous navigation,
and actuation decision. The PCB prototype is attached to an ATG-
850 RTK drone, with a camouflage shell whose color is similar to
the target, as shown in Fig. 15(a). The drone flies about 200 m above
the ground in an open space. In the drone, a complementary filter
[22] is employed for attitude estimation using the data collected by
the BMI055 inertial sensor. GPS is forbidden to reveal the threat on
inertial sensors here. In addition, GPS signals in some cases may
lose (e.g., due to the electromagnetic interference), and the attacks
can continue with GPS spoofing [32, 48, 59, 69].

If no attack occurs, the drone follows a preset path, i.e., a normal
trajectory as the baseline. It goes east at the speed of around 4 m/s
and then turns north at the angular velocity of about 5◦/s, as the
green line in Fig. 15(b). We conduct two attacks that manipulate
trajectories as the blue and red lines in Fig. 15(b).

In the attack case 1, we successfully deflect the target drone to
drift away andmove under adversarial control as the blue line in Fig.
15(b). When arriving at the ‘A’ point, the target drone is supposed
to alter its orientation and turn north following the preset path.
The PCB prototype detects this rotation and launches an attack,
where the target gyroscope produces false readings of 5◦/s and
tells the controller that it has faced north (actually still faces east,
with an angle error of about 11◦). Hence, the drone goes straight
rather than turns left. After the ‘A’ point, the drone is intended to
move straightly without veering. The PCB prototype keeps idle
until the drone arrives at ‘B’ point. It injects false anticlockwise
gyroscope readings of 5◦/s here. This unreal rotation reported by the
attacker-controlled inertial sensor misleads the actuation system
to the belief that it is pushed by a real external force. Due to the
negative feedback mechanism for balance, the drone sheers off
clockwise, and thus, faces south. In this way, attackers manipulate
the target drone into following the malicious trajectory. Ultimately,
at the assigned location under adversarial control, the drone will
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have an ‘illusion’ of arriving at the legal destination and stop its
flying (this can be done by using the following attack case 2).

In the attack case 2, we stop the target drone, as the red line in
Fig. 15(b). A forward false signal of 0.4 m/s2 is injected into the
accelerometer. Due to the negative feedback mechanism, the target
drone actuates backward under the misperception of the existence
of an unreal forward acceleration. As a result, the drone slows down
and then (consuming about 10 s) stops at the ‘C’ point.

In comparison with existing approaches [70, 71], our proposed
attacks realize stable injection into all inertial sensors, free from the
disturbance from frequency offsets. We extend attacks to moving
targets, and in particular, the touch-based attacks cover the most
complex scenarios where the MDOF targets are moving.

8 DEFENSE AND DISCUSSION
In this section, we discuss the limitations of our proposed attacks
and countermeasures for protecting inertial sensors.

8.1 Countermeasure
Considering the wide deployment of inertial sensors, it is urgent
to develop effective countermeasures. We have informed relevant
manufacturers of the attack and the following defending methods

8.1.1 Existing Approaches. We summarize the limits of current
methods that are potentially against acoustic transduction attacks.

Dampening and Isolation. An intuitive idea is to weaken or
eliminate the acoustic injection before it acts on sensors. Using
acoustic dampening materials, such as acoustic foams, can attenu-
ate over-the-air acoustic waves before they penetrate sensors [17].
Advanced dampening materials reach 90% acoustic reduction [64].
However, this method undoubtedly introduces significant cost. Be-
sides, its resilience is unclear against attacks via solid propagation.

Filtering. Using low pass filters is another option to weaken
acoustic effect [70]. However, the attacks still work even if the cut-
off frequency is limited within 10 Hz due to hardware defects [34].
Sun et al. [67] propose a filter based on orthogonal demodulation,
but the I/O dual channel is rare in existing inertial sensors.

Redundancy. Redundancy techniques that leverage multiple
sensors for double checking are believed to enhance the resilience.
Nevertheless, the vulnerability of Pixhawk 4 implies that acoustic
transduction attack can jointly influence multiple inertial sensors si-
multaneously. Although other types of signals can be fused [14, 52],
those signals are not always reliable. For example, GPS signals may
lose in some cases (e.g., under the electromagnetic interference).
Even worse, spoofing attacks [21, 49, 72] threat various sensors,
including GPS [32, 48, 59, 69], LiDARs [12, 60, 66], camera sensors
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[16], microphones [36, 56, 85–87]. An advanced power-switching
method [61, 80, 89] is effective against electromagnetic interference.
However, it is inapplicable to detecting transduction attacks.

Sampling. Normally, attackers modulate acoustics based on
target sensors’ sampling rate. Conversely, it is feasible to modify
sampling intervals. Trippel et al. [70] propose two defense mecha-
nisms. One is the randomized sampling that adds a random delay
to each sampling period. It prevents false DC signals but with the
penalty of accumulating growing measurement errors. The other
requires out-of-phase sampling with two samples at a 180◦ phase
delay. Its essence lies in doubling the sampling rate. However, it
performs ineffectively when 𝜔𝑑 = 4𝜋𝑛𝐹𝑠 in Eq. 4. Tu et al. [71]
recommend a dynamic 𝐹𝑠 on the basis of the above randomized
sampling mechanism. Nevertheless, it has not yet alleviated the
problem of degraded accuracy in inertial measurements.
8.1.2 Our Suggestion. Though the standard deviation of false sig-
nals is slightly higher than real ones, this difference is too tiny to
separate false signals. Instead, we alter sampling rate and reduce its
side effect. We minimize the accuracy loss by regulating jitters into
the sampling period, with a theoretical analysis on its effectiveness.

Sampling jitters 𝑡𝑎 would limit the outputs’ signal to noise ratio
(SNR) according to the frequency 𝜔 as follows [9],

𝑆𝑁𝑅 = −20𝑙𝑜𝑔10 (𝜔 × 𝑟𝑚𝑠 (𝑡𝑎)), (17)
where 𝑟𝑚𝑠 (𝑡𝑎) is the root mean square jitters. For injected signals,
𝜔 = 𝜔𝑟 is far greater than that of real motion. Therefore, sampling
jitters significantly disturb spoofing attacks.

Instead of a fixed sampling interval 1
𝐹𝑠
, we design alternate

intervals 1
𝐹𝑠

+ 𝑡𝑎 [𝑖] with the cyclic jitters 𝑡𝑎 [𝑖] as follows,
𝑡𝑎 [𝑖] = 𝛼𝑚, (𝑚 = 𝑖 𝑚𝑜𝑑 𝐶, 𝑖 ∈ N) (18)

where 𝛼𝑚s are small constants and𝐶 is an arbitrary constant. Here
we set 𝐶 = 2 and 𝛼0 = −𝛼1. In the comparison of random [70] or
dynamic [71] ones, the periodically alternating jitters have a smaller
root mean square with the adjustable 𝛼𝑚s. Hence, our countermea-
sure significantly mitigates the effect of spoofing attacks, at the
cost of exerting little adverse influence on inertial measurements.

8.2 Discussion
Here we discuss the potential influence of the small-sized malicious
device and limitations of our proposed attack.
8.2.1 Impact of small-sized integration. Indeed, the small-sized
integration could be double-edged. After the integration, the mali-
cious devices will become sufficiently small to perform more covert
attacks. Considering that the voltage supplied by the integrated
power component is related to the intensity of the malicious acous-
tics, we should maintain a voltage supply of 12 V. Otherwise, the
range of false signals’ amplitudes would reduce. However, in this
case, the battery volume might be reduced, resulting in a small en-
durance. Fortunately, it does not need to constantly emit malicious
acoustics and the small-sized malicious device can still support
practical attacks.
8.2.2 Limitations. Our remote attacks on moving targets with
single-axis sensors are assisted by a camera running the MVSCRF
algorithm. However, MVSCRF requires non-trivial computing re-
sources. In our experiments, the MVSCRF algorithm presents an
execution latency of 2 s. Such latency can be compensated when

the targets move at a low speed (e.g., the MITU robot in Sec. 7.3.1)
or approximately uniform speed by multiple speed measurements.
However, if a target keeps changing the moving speed, MVSCRF
would produce extensive errors. These errors limit the ability of
attackers to generate a stable false signal and degrade the remote
acoustic transduction attacks to be DoS.

9 RELATEDWORK
Privacy Leakage through Inertial Sensors. Different from the
pursuit of inertial data tampering, several attacks utilize IMUs for
privacy exfiltration, including speech [2, 4, 27, 44], keystroke [11,
40, 42, 45, 73, 82], physical activity [29, 74, 77], localization [15,
38, 46, 53], and device identification [20, 62, 88]. Moreover, inertial
sensors can also leak users’ behavioral biometrics [13, 39, 79, 81].

Sensor Spoofing Attacks. Such spoofing attacks are increas-
ingly risking the security of CPSs [84]. A slew of sensors are suffer-
ing from electromagnetic interference (EMI) [21, 36, 49, 57, 58, 72].
LiDARs systems [12, 60, 66], GPS [32, 48, 59, 69] and camera sen-
sors [16] are also vulnerable. Ultrasound can inject inaudible com-
mander into VAs as well, which benefits from the acoustic non-
linearity [56, 85–87]. As a countermeasure, researchers usually
utilize power-switching for defence [61, 80, 89]. Unfortunately, the
power-switching method defends mainly against EMI, but it could
not apply to resisting acoustic transduction attacks.

Acoustic Sensitivity of Inertial Sensors. Inertial sensors are
vulnerable to acoustic injection [18, 34, 76]. Not content with DoS
attacks [63, 75], researchers [70, 71] pursue adversarial control
but are unable to achieve controllable waveform and orientation
due to the frequency offset, multiaxial resonance, and the target’s
motion. In contrast, KITE achieves this goal, not to mention that
KITE also has other advantages, such as orientation control, motion
robustness, and low cost. In addition, sensitive inertial sensors can
be utilised to establish covert channels [6, 25, 55].

10 CONCLUSION
We conduct a thorough threat analysis of acoustic transduction at-
tacks against CPSs. We model acoustic effect on inertial sensors and
organize our study covering most of the possible attack scenarios.
A new acoustic modulation-based attacking method is proposed
to exploit the practical potential threat of a realistic attacker un-
der all these scenarios. Combining the performed investigations
together, we expand the attack surface into MDOF systems and
suppress the motion influence. In particular, we accomplish control
over COTS in an automatic manner using the designed PCB proto-
type. End-to-end attack cases appeal for people to take necessary
countermeasures to resist such threats.

ACKNOWLEDGES
This paper is partially supported by the National Key R&D Pro-
gram of China (2021QY0703), National Natural Science Foundation
of China under grant U21A20462, 61872285, 62032021, 61772236,
62172359, and 61972348, Research Institute of Cyberspace Gover-
nance in Zhejiang University, Leading Innovative and Entrepreneur
Team Introduction Program of Zhejiang (Grant No. 2018R01005),
and Ant Group Funding No.Z51202000234.



KITE: Exploring the Practical Threat from Acoustic Transduction Attacks on Inertial Sensors SenSys ’22, November 6-9, 2022, Boston, MA, USA

REFERENCES
[1] Analog Devices, Inc. 2017. The five motion senses: Using MEMS inertial sensing

to transform applications. https://www.analog.com.
[2] S. A. Anand and N. Saxena. 2018. Speechless: Analyzing the Threat to Speech

Privacy from Smartphone Motion Sensors. In IEEE Symposium on Security and
Privacy.

[3] Anonymous User. 2022. KITE. https://github.com/KITE-anonymous-
user/KITE.git.

[4] Z. Ba, T. Zheng, X. Zhang, Z. Qin, B. Li, X. Liu, and K. Ren. 2020. Learning-based
Practical Smartphone Eavesdropping with Built-in Accelerometer. In Network
and Distributed System Security Symposium.

[5] J. J. Bernstein, S. Cho, A. T. King, A. Kourepenis, and M. Weinberg. 1993. A
micromachined comb-drive tuning fork rate gyroscope. In IEEE Micro Electro
Mechanical Systems.

[6] K. Block, S. Narain, and G. Noubir. 2017. An Autonomic and Permissionless
Android Covert Channel. In ACM Conference on Security and Privacy in Wireless
and Mobile Networks.

[7] Bosch, Inc. 2018. BMI160 Datasheet. https://www.bosch-sensortec.com/products/
motion-sensors/imus/bmi160.html.

[8] Bosch, Inc. 2020. BMI055 Datasheet. https://www.mouser.cn/datasheet/2/783/BST
_BMI055_DS000-1509583.pdf.

[9] B. Brannon and A. Barlow. 2006. Aperture Uncertainty and ADC System Perfor-
mance. https://www.analog.com/media/en/technical-documentation application-
notes/an-501.pdf.

[10] Burr-Brown Products from Texas Instruments. 2002. DAC902 Datasheet.
https://www.ti.com/lit/ds/symlink/dac902.pdf.

[11] L. Cai and H. Chen. 2011. TouchLogger: Inferring Keystrokes on Touch Screen
from Smartphone Motion. In USENIX Workshop on Hot Topics in Security.

[12] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and
Z. M. Mao. 2019. Adversarial Sensor Attack on LiDAR-based Perception in
Autonomous Driving. In ACM Conference on Computer and Communications
Security.

[13] W. Chen, L. Chen, Y. Huang, X. Zhang, l. Wang, R. Ruby, and K. Wu. 2019. Taprint:
Secure Text Input for Commodity Smart Wristbands. In Annual International
Conference on Mobile Computing and Networking.

[14] H. Choi, W. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and X. Xinyan. 2018.
Detecting Attacks Against Robotic Vehicles: A Control Invariant Approach. In
ACM Conference on Computer and Communications Security.

[15] A. Das, N. Borisov, and M. Caesar. 2016. Tracking Mobile Web Users Through
Motion Sensors: Attacks and Defenses. InNetwork and Distributed System Security
Symposium.

[16] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart. 2016. Controlling
UAVs with Sensor Input Spoofing Attacks. In USENIX Workshop on Offensive
Technologies.

[17] R. Dean, N. Burch, M. Black, A. Beal, and G. Flowers. 2011. Microfibrous metallic
cloth for acoustic isolation of a MEMS gyroscope. International Society for Optical
Engineering 7979 (2011), 797909.

[18] R. N. Dean, S. T. Castro, G. T. Flowers, G. Roth, A. Ahmed, A. S. Hodel,
B. E. Grantham, D. A. Bittle, and J. P. Brunsch. 2011. A Characterization of
the Performance of a MEMS Gyroscope in Acoustically Harsh Environments.
IEEE Transaction on Industrial Electronics 58, 7 (2011), 2591–2596.

[19] R. N. Dean, G. T. Flowers, A. S. Hodel, G. Roth, S. T. Castro, R. Zhou, A. Moreira,
A. Ahmed, R. Rifki, B. E. Grantham, D. Bittle, and J. Brunsch. 2007. On the
Degradation of MEMS Gyroscope Performance in the Presence of High Power
Acoustic Noise. In IEEE International Symposium on Industrial Electronics.

[20] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi. 2014. AccelPrint:
Imperfections of Accelerometers Make Smartphones Trackable. In Network and
Distributed System Security Symposium.

[21] J. L. Esteves, E. Cottais, and C. Kasmi. 2018. Unlocking the access to the effects
induced by IEMI on a civilian UAV. In International Symposium on Electromagnetic
Compatibility.

[22] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel. 2008. A complemen-
tary filter for attitude estimation of a fixed-wing UAV. In IEEE/RSJ International
Conference on Intelligent Robots and Systems.

[23] B. Farshteindiker, N. Hasidim, A. Grosz, and Y. Oren. 2016. How to Phone Home
with Someone Else’s Phone: Information Exfiltration Using Intentional Sound
Noise on Gyroscopic Sensors. In USENIX Workshop on Offensive Technologies.

[24] T. F.Hueter and R.H.Bolt. 1955. Sonics. John Wiley & Sons.
[25] M. Gao, F. Lin, W. Xu, M. Nuermaimaiti, J. Han, W. Xu, and K. Ren. 2020. Deaf-Aid:

Mobile IoT Communication Exploiting Stealthy Speaker-to-Gyroscope Channel.
In Annual International Conference on Mobile Computing and Networking.

[26] GRASAcoustics, Inc. 2000. GRAS 46AM 1/2” CCP Free-field StandardMicrophone
Set, Wide Frequency. https://www.grasacoustics.com/products/measurement-
microphone-sets/constant-current-power-ccp/product/551-46am.

[27] J. Han, A. J. Chung, and P. Tague. 2017. PitchIn: Eavesdropping via Intelligible
Speech Reconstruction Using Non-acoustic Sensor Fusion. In ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks.

[28] Harman Inc. 2019. JBL STADIUM GTO750T. https://www.onlinecarstereo.com/
CarAudio/p_51143_JBL_STADIUMGTO750T.aspx.

[29] J. Hou, X. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and P. Yang. 2019. SignSpeaker:
A Real-time, High-Precision SmartWatch-based Sign Language Translator. In
Annual International Conference on Mobile Computing and Networking.

[30] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu. 2021. Poltergeist:
Acoustic Adversarial Machine Learning against Cameras and Computer Vision.
In IEEE Symposium on Security and Privacy.

[31] V. Kaajakari. 2009. Practical MEMS: Design of Microsystems, Accelerometers, Gyro-
scopes, RF MEMS, Optical MEMS, and Microfluidic Systems. Small Gear Publishing.

[32] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys. 2014. Unmanned
Aircraft Capture and Control Via GPS Spoofing. Journal of Field Robotics 31, 4
(2014), 617–636.

[33] S. K. Khaitan and J. D. McCalley. 2015. Design Techniques and Applications of
Cyberphysical Systems: A Survey. IEEE Systems Journal 9, 2 (2015), 350–365.

[34] S. Khazaaleh, G. Korres, M. A. Eid, M. Rasras, and M. F. Daqaq. 2019. Vulnerability
of MEMS Gyroscopes to Targeted Acoustic Attacks. IEEE Access 7 (2019), 89534–
89543.

[35] M. Kraft and N. M.White. 2013. MEMS for automotive and aerospace applications.
MEMS for automotive tire pressure monitoring systems (2013), 54–77.

[36] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu, Y. Kim, and
W. Xu. 2013. Ghost talk: Mitigating EMI signal injection attacks against analog
sensors. In IEEE Symposium on Security and Privacy.

[37] A. G. Kuznetsov, Z. S. Abutidze, B. I. Portnov, V. I. Galkin, and A. A. Kalik. 2011.
Development of MEMS sensors for aircraft control systems. Gyroscopy and
Navigation 2, 1 (2011), 59–62.

[38] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao. 2012. A Reliable and Accurate
Indoor Localization Method Using Phone Inertial Sensors. In ACM Conference on
Ubiquitous Computing.

[39] J. Liu, C. Wang, Y. Chen, and N. Saxena. 2017. VibWrite: Towards Finger-input
Authentication on Ubiquitous Surfaces via Physical Vibration. In ACM Conference
on Computer and Communications Security.

[40] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. 2015. When Good Becomes Evil:
Keystroke Inference with Smartwatch. In ACM Conference on Computer and
Communications Security.

[41] N. C. Macdonald, K. A. Shaw, and S. G. Adams. 2001. Microelectromechanical
accelerometer for automotive applications. Smart Materials Bulletin 2001, 5 (2001),
16.

[42] P. Marquardt, A. Verma, H. Carter, and P. Traynor. 2011. (sp)iPhone: decoding
vibrations from nearby keyboards using mobile phone accelerometers. In ACM
Conference on Computer and Communications Security.

[43] MI, Inc. 2016. Mi Robot Builder. https://www.mi.com/global/mi-robot-builder.
[44] Y. Michalevsky, D. Boneh, and G. Nakibly. 2014. Gyrophone: Recognizing Speech

from Gyroscope Signals. In USENIX Security Symposium.
[45] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury. 2012. Tapprints:

your finger taps have fingerprints. In International Conference on Mobile Systems,
Applications, and Services.

[46] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. 2016. Inferring User Routes and
Locations Using Zero-Permission Mobile Sensors. In IEEE Symposium on Security
and Privacy.

[47] National Instruments, Inc. 2017. NI VituralBench 8012. https://www.ni.com/pdf/
manuals/371527e.pdf.

[48] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim. 2019. Tractor
Beam: Safe-hijacking of Consumer Drones with Adaptive GPS Spoofing. ACM
Transactions on Privacy and Security 22, 2 (2019), 12:1–12:26.

[49] Y. Park, Y. Son, H. Shin, D. Kim, and Y. Kim. 2016. This Ain’t Your Dose: Sensor
Spoofing Attack on Medical Infusion Pump. In USENIX Workshop on Offensive
Technologies.

[50] P. PX4. 2021. Open Source Autopilot for Drones - PX4 Autopilot. https://px4.io.
[51] O. Pöllny, A. Held, and F. Kargl. 2021. The Effect Of Sound On The Gyroscopes

In Your Car. In IEEE Vehicular Technology Conference.
[52] R. Quinonez, J. Giraldo, L. E. Salazar, E. Bauman, A. A. Cárdenas, and Z. Lin.

2020. SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants.
In USENIX Security Symposium.

[53] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. 2012. Zee: Zero-Effort
Crowdsourcing for Indoor Localization. In Annual International Conference on
Mobile Computing and Networking.

[54] Raspberry Pi. 2021. Raspberry Pi Zero W. https://www.raspberrypi.org/pi-zero-
w/.

[55] N. Roy, M. Gowda, and R. R. Choudhury. 2015. Ripple: Communicating through
Physical Vibration. In USENIX Symposium on Networked Systems Design and
Implementation.

[56] N. Roy, H. Hassanieh, and R. Roy Choudhury. 2017. BackDoor: Making Micro-
phones Hear Inaudible Sounds. In ACM SIGMOBILE International Conference on
Mobile Systems, Applications, and Services.

[57] F. Sabath. 2011. What can be learned from documented Intentional Electro-
magnetic Interference (IEMI) attacks?. In URSI General Assembly and Scientific
Symposium.

https://www.grasacoustics.com/products/measurement-microphone-sets/constant-current-power-ccp/product/551-46am
https://www.grasacoustics.com/products/measurement-microphone-sets/constant-current-power-ccp/product/551-46am
https://www.onlinecarstereo.com/CarAudio/p_51143_JBL_STADIUMGTO750T.aspx
https://www.onlinecarstereo.com/CarAudio/p_51143_JBL_STADIUMGTO750T.aspx
https://www.mi.com/global/mi-robot-builder
https://www.ni.com/pdf/manuals/371527e.pdf
https://www.ni.com/pdf/manuals/371527e.pdf


SenSys ’22, November 6-9, 2022, Boston, MA, USA M. Gao et al.

[58] J. Selvaraj, G. Y. Dayanıklı, N. P. Gaunkar, D. Ware, R. M. Gerdes, and M. Mina.
2018. Electromagnetic Induction Attacks Against Embedded Systems. In ACM on
Asia Conference on Computer and Communications Security.

[59] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. 2020. Drift with Devil: Security
of Multi-Sensor Fusion based Localization in High-Level Autonomous Driving
under GPS Spoofing. In USENIX Security Symposium.

[60] H. Shin, D. Kim, Y. Kwon, and Y. Kim. 2017. Illusion and dazzle: Adversarial
optical channel exploits against lidars for automotive applications. In International
Conference on Cryptographic Hardware and Embedded Systems. 445–467.

[61] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava. 2015. PyCRA:
Physical Challenge-Response Authentication For Active Sensors Under Spoofing
Attacks. In ACM Conference on Computer and Communications Security.

[62] Y. Son, J. Noh, J. Choi, and Y. Kim. 2018. GyrosFinger: Fingerprinting Drones for
Location Tracking Based on the Outputs of MEMS Gyroscopes. ACM Transactions
on Privacy and Security 21, 2 (2018), 10:1–10:25.

[63] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim. 2015. Rocking
Drones with Intentional Sound Noise on Gyroscopic Sensors. In USENIX Security
Symposium.

[64] P. Soobramaney, G. Flowers, and R. Dean. 2015. Mitigation of the Effects of High
Levels of High-Frequency Noise on MEMS Gyroscopes Using Microfibrous Cloth.
In Asme International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference.

[65] STMicroelectronics. 2018. STM32-F407VET6 Datasheet. https://www.mouser
.cn/datasheet/2/389/cd00191185-1796739.pdf.

[66] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao. 2020. Towards Robust LiDAR-based
Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack
and Countermeasures. In USENIX Security Symposium.

[67] Y. Sun, P. Guo, L. Feng, C. Xing, and J. Wu. 2020. A Filtering Algorithm of MEMS
Gyroscope to Resist Acoustic Interference. Sensors 20, 24 (2020), 7352.

[68] W. T. Thomson. 1981. Theory of vibration with applications. Prentice Hall.
[69] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun. 2011. On the

requirements for successful GPS spoofing attacks. InACMConference on Computer
and Communications Security.

[70] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. 2017. WALNUT: Waging
Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks.
In IEEE European Symposium on Security and Privacy.

[71] Y. Tu, Z. Lin, I. Lee, and X. Hei. 2018. Injected and Delivered: Fabricating Implicit
Control over Actuation Systems by Spoofing Inertial Sensors. In USENIX Security
Symposium.

[72] Y. Tu, S. Rampazzi, B. Hao, A. Rodriguez, K. Fu, and X. Hei. 2019. Trick or Heat?
Manipulating Critical Temperature-Based Control Systems Using Rectification
Attacks. In ACM Conference on Computer and Communications Security.

[73] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. 2016. Friend or Foe?: Your
Wearable Devices Reveal Your Personal PIN. In ACM on Asia Conference on
Computer and Communications Security.

[74] H. Wang, T. T. Lai, and R. R. Choudhury. 2015. MoLe: Motion Leaks through
Smartwatch Sensors. In Annual International Conference on Mobile Computing
and Networking.

[75] Z. Wang, K. Wang, B. Yang, S. Li, and A. Pan. 2017. Sonic Gun to Smart Devices:
Your Devices Lose Control Under Ultrasound/Sound. In Blackhat USA.

[76] Z. Wang, W. Zhu, J. Miao, H. Zhu, C. Chao, and O. K. Tan. 2005. Micromachined
thick film piezoelectric ultrasonic transducer array. Sensors & Actuators A Physical
130-131 (2005), 485–490.

[77] H. Wen, J. Ramos Rojas, and A. K. Dey. 2016. Serendipity: Finger Gesture Recog-
nition Using an Off-the-Shelf Smartwatch. In Conference on Human Factors in
Computing Systems.

[78] Wikipedia. 2021. Acoustic wave. https://en.wikipedia.org/wiki/Acoustic-wave.
[79] C. Wu, K. He, J. Chen, Z. Zhao, and R. Du. 2020. Liveness is Not Enough:

Enhancing Fingerprint Authentication with Behavioral Biometrics to Defeat
Puppet Attacks. In USENIX Security Symposium.

[80] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu. 2018. Analyzing and Enhancing the Security
of Ultrasonic Sensors for Autonomous Vehicles. IEEE Internet Things Journal 5, 6
(2018), 5015–5029.

[81] X. Xu, J. Yu, Y. chen, Q. Hua, Y. Zhu, Y.-C. Chen, and M. Li. 2020. TouchPass:
Towards Behavior-Irrelevant on-Touch User Authentication on Smartphones
Leveraging Vibrations. In Annual International Conference on Mobile Computing
and Networking.

[82] Z. Xu, K. Bai, and S. Zhu. 2012. TapLogger: inferring user inputs on smartphone
touchscreens using on-board motion sensors. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks.

[83] Y. Xue, J. Chen,W.Wan, Y. Huang, C. Yu, T. Li, and J. Bao. 2019. MVSCRF: Learning
Multi-View Stereo With Conditional Random Fields. In IEEE/CVF International
Conference on Computer Vision.

[84] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu. 2020. SoK: A Minimalist
Approach to Formalizing Analog Sensor Security. In IEEE Symposium on Security
and Privacy.

[85] Q. Yan, K. Liu, Q. Zhou, H. Guo, and N. Zhang. 2020. SurfingAttack: Interactive
Hidden Attack on Voice Assistants Using Ultrasonic Guided Waves. In Network

and Distributed System Security Symposium.
[86] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang,

and C. A. Gunter. 2018. CommanderSong: A Systematic Approach for Practical
Adversarial Voice Recognition. In USENIX Security Symposium.

[87] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. 2017. Dolphinattack:
Inaudible voice commands. In ACM conference on computer and communications
security.

[88] J. Zhang, A. R. Beresford, and I. Sheret. 2019. SensorID: Sensor Calibration
Fingerprinting for Smartphones. In IEEE Symposium on Security and Privacy.

[89] Y. Zhang and K. Rasmussen. 2020. Detection of electromagnetic interference
attacks on sensor systems. In IEEE Symposium on Security and Privacy.


	Abstract
	1 Introduction
	2 Inertial Sensors
	3 Threat Analysis
	3.1 Attack Scenarios
	3.2 Attackers' Capability and Patterns
	3.3 Attack Stage

	4 Acoustic Modulation
	4.1 Resonant Characteristic Modeling
	4.2 Stable and Controllable Injections

	5 Orientation Control
	6 Attacks on Moving Systems
	6.1 Motion Influence
	6.2 Remote Attacks
	6.3 Touch-based Attacks

	7 Evaluation
	7.1 Experiment Setup
	7.2 Overall Performance
	7.3 Robustness against Movement
	7.4 Effective Distance of Remote Attack
	7.5 Diversity of Target Devices
	7.6 Inaudibility
	7.7 End-to-End Attack Cases Study

	8 Defense and Discussion
	8.1 Countermeasure
	8.2 Discussion

	9 Related Work
	10 Conclusion
	References

