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Abstract—Unauthorized editing of speech recordings poses a
significant threat to the security and authenticity of speeches,
particularly in the forensic and legal fields. Even worse, the
speech is increasingly at risk of being tampered with due to
the development of AI techniques (e.g., Audio Deepfake). It
is difficult for normal users to guarantee what they say has
not been illegally changed. Audio watermark techniques are
recognized as an active method against speech forgery. However,
such techniques suffer from audio quality degradation and non-
real-time insertion. Therefore, they cannot be adopted into real-
time voice applications against forgery on remote recordings, e.g.,
phone calls, live broadcasts, and online meetings. Fortunately,
high-definition (HD) audio techniques provide ultrasonic bands
without distortion. Therefore, ultrasonic creditable factors can be
utilized. We propose an audio tamper-proof system, named Aegis.
It provides commodity mobile devices (e.g., smartphones) with
an effective method of real-time insertion of inaudible creditable
factors. Users can claim that audio with no or mismatched
ultrasound is invalid and illegal. In particular, we explore the
acoustic reverse-nonlinear phenomenon where audible signals can
be modulated onto the ultrasonic spectrum. By emphasizing the
correlation between speech signals and ultrasound, we realize
effective defense against various tampering methods.

Index Terms—Ultrasound, mobile sensing, acoustic nonlinear-
ity, tamper-proof detection.

I. INTRODUCTION

The authenticity of speeches is fundamental in various fields
ranging from business to court. However, the speech is vulner-
able to forgery. As illustrated in Fig. 1, the adversary (Bob)
can tamper with the speech by replacing the ‘lends to’ segment
with ‘borrows from’. In this case, the fact is completely
twisted. To make matters worse, AI-enabled techniques [1]–
[3], e.g., Audio Deepfake [4], recently pose a new yet severe
threat to speech security. It is hard for normal users to prove
that edited recordings or synthetic audio are fake.

Existing active tamper-proof techniques rely essentially on
trustworthy third parties (e.g., security organs) or factors (e.g.,
watermark [5]–[7]). However, they face practical limitations.
Professional staff is equipped with site enforcement recorders
(costing over $57.5 each) [8] to confirm speech authenticity in
the prosecution and legal fields. However, normal users who
cannot always carry such specialist devices can hardly perform
forensics. Audio fragile watermark techniques [9] are deemed
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Fig. 1. An application scenario for Aegis, a tamper-proof technique for real-
time voice applications. Adversaries, as remote/online participants, record the
user’s speeches and edit, tamper with, or forge them maliciously. Aegis inserts
ultrasonic creditable factors into audio timely to defend speech authenticity.

an active solution to defend integrity and authenticity against
speech forgery. If the inserted fragile watermarks are distorted
or lost, the audio is recognized to be fake. However, watermark
techniques [5]–[7], [10] are faced with several limitations
in practice. Time-delayed manual operations are required for
watermark insertion, along with audio quality degradation.

The issue remains unresolved for users who intentionally
safeguard their speeches, especially in real-time voice appli-
cations. Remote participants might maliciously record and ma-
nipulate the users’ speeches from phone calls, live broadcasts,
online meetings, and other such interactions. Consequently,
it becomes challenging to distinguish the authentic recording
from the contradictory versions.

Benefiting from high-definition (HD) audio techniques,
mobile devices (represented by smartphones with typical
sampling rates of 44.1 kHz or 48 kHz) are able to record
and transmit audio with undistorted ultrasonic features. The
lossless audio compression has increasingly replaced the lossy
compression (e.g., MP3) [11]. Popular audio compression
techniques obtain high sampling rates of at least 44.1 kHz.
For example, WAV, APE, and FLAC sample at 44.1 kHz,
while advanced audio coding (AAC) supports a high sampling
rate up to 96 kHz. Moreover, OPUS in the on-the-top (OTT)
communication [12] and enhanced voice services (EVS) [13]
in VoLTE offer a wide band of 48 kHz. Thus, mobile devices



are capable of acoustic (along with ultrasound) collection and
transmission within 22.05 kHz or 24 kHz.

The ultrasonic creditable factors express the potential in
real-time insertion against forgery. During speech recording,
mobile devices play encoded ultrasonic signals. In this way,
the ultrasonic creditable factors are inserted into audio timely.
Such a method is inaudible to humans, along with high
throughput [14]. Although low-pass filters can directly remove
ultrasonic features, recordings with their ultrasound eliminated
would be naturally invalid. Therefore, a commercial off-the-
shelf (COTS) smartphone can serve as an audio enforcement
recorder for normal users. In practice, the design of ultrasonic
tamper-proof should overcome the two following challenges.

1) Ultrasound-sound Correlation: How to design ultra-
sonic creditable factors to relate with speeches in case of
malicious editing, tampering, and forgery? The creditable
factors should be capable of resisting sophisticated adversaries
who might forge/replicate ultrasonic characteristics. If inde-
pendent of speeches, the scheme is vulnerable to copy-move
forgery [15]. As a countermeasure, multiple ultrasonic effects
are exploited to characterize speeches, including Doppler Fre-
quency Shift (DFS) and Time-of-Flight (TOF). In particular,
we discover a novel phenomenon of acoustic reverse nonlin-
earity (RNL). Different from the wide belief that nonlinear
harmonics occur merely among the band over 25 kHz [16]–
[22], we observe that low-frequency speech signals can be
non-linearly modulated onto ultrasonic signals, and such a
phenomenon is common among COTS smartphones.

2) Resilience: How to resist various tampering attacks,
especially those potentially emerging in the future? Instead of
features introduced by forgery, our proposed method detects
whether the ultrasonic creditable factors match the speeches.
Therefore, it can effectively defend against various tampering
methods, including both copy-move and Audio Deepfake, even
for a future forgery technique.

We apply ultrasound to building a tamper-proof system,
named Aegis. The basic idea is illustrated in Fig. 2. The
ultrasonic carriers are encoded (upon predetermined informa-
tion, e.g., device identification and time stamps) and emitted
by the on-board speakers of mobile devices. In this way,
ultrasonic creditable factors (including ultrasonic codes and
ultrasound-sound correlation) are embedded into the audio.
Aegis checks these factors for tamper-proof detection. We
can detect the conflict between the ultrasound segments and
the maliciously modified fragments of ‘borrows from’ in
Fig. 1, which indicates the existence of forgery. Aegis provides
normal users with an effective method for anti-forgery, with
the characteristics of ‘seamless integration’ on COTS mobile
devices. Extensive evaluations validate the defending effec-
tiveness of Aegis in real-world scenarios.

Our contributions are summarized as follows:
• We realize Aegis, a new tamper-proof system, especially

for real-time voice applications. It is the first to leverage
the ultrasonic credible factors to defend against speech
forgery. Aegis is resistant to diverse tampering methods
and robust against future adversaries.
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Fig. 2. Aegis modulates sounds upon encoded ultrasound using reverse
nonlinearity. It checks the ultrasonic codes and detects the ultrasound-sound
correlation for tamper-proof.

• Aegis enables ‘seamless integration’ deployment on
COTS mobile devices, free from audio quality degrada-
tion. It presents a promising way to help normal users
equipped merely with mobile devices to improve the
authenticity of their speeches.

• We explore a new ultrasonic characteristic. Unlike the
common sense on acoustic non-linearity, we find that au-
dible signals can reversely convert into ultrasonic bands.
We believe this reverse nonlinearity will significantly
expand the acoustic application scope.

II. BACKGROUND

Before presenting the system design, we describe a typical
application scenario and analyze possible forgery threats.

A. Application Scenarios

Our main motivation is to resist editing, tampering, and
forgery of audio recordings, especially in real-time voice
applications. Some common scenarios include phone calls,
voice messages, live broadcasts, and online meetings. Re-
mote/online participants might record and forge the user’s
speeches, whereas traditional watermarks cannot provide real-
time protection on remote recordings.

In practice, the user installs Aegis on his/her smartphone
and holds it using the two most popular holding gestures:
towards the microphone (keeping the bottom microphone
about 2∼4 cm away from the mouth) or ‘Phone Call’. While
talking, Aegis emits modulated ultrasonic signals via on-board
speakers and records them via microphones. In this way,
ultrasonic creditable factors (including ultrasonic codes and
ultrasound-sound correlation) are embedded into the audio.

Users or an impartial third party, such as blockchains,
governments, courts, or arbitration associations, can assert that
audio featuring mismatched or absent ultrasonic characteristics
is invalid and illegal. Thereby, Aegis prevents economic losses
and legal disputes caused by speech forgery. It has a wide
applicable scope, ranging from individual daily recordings to
digital law evidence, e.g., oral statements, voice signatures,
and any other audio recordings.

Our paper aims at a forensics solution for users who actively
protect their speeches. It is also suited for non-real-time appli-
cations. The cases with no measures taken are out of our scope.
Besides, Aegis is not for live detection, user authentication, nor
defending voice assistants against ’inaudible’ commands [17],
[22] and adversarial audio samples [23].
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Fig. 3. An illustration of the T-F domain features of a speech segment.

B. Threat Model

We assume the adversary possesses sufficient knowledge
about our mechanisms. The following attacks are considered
to pose a threat to speech authenticity.

Audio Edition. Adversaries could leverage various tradi-
tional editing means, e.g., segment deletion and copy-move
(splicing segments prerecorded from the same speaker). They
can also copy-move or re-modulate the corresponding ultra-
sonic features to bypass Aegis.

Replay Attack. Adversaries might replay segments prere-
corded from the same speaker.

Imposter Attack. Adversaries attempt to imitate the artic-
ulatory gestures of victims to forge the audio.

Synthetic Attack. Adversaries can utilize learning-based
audio-generation techniques, of which the most popular ones
are text to speech (TTS) [24] and voice conversion (VC) [25].
They also attempt to generate the ultrasonic features using
generative adversarial network (GAN) [26].

Hybrid Attack. The adversaries may combine multiple
means. For example, the adversary might execute a replay
attack for RNL and an imposter attack for DFS and TOF.

III. MULTIPLE ULTRASONIC EFFECT EXPLOITATION

We model the acoustic reverse nonlinearity and explore the
simultaneous utilization of multiple ultrasonic effects.

A. Modeling Reverse Nonlinearity

In the literature, the common sense on the acoustic non-
linearity is in a direction from the ultrasound band to the
low-frequency band [16]–[22]. On the contrary, our observed
acoustic reverse nonlinearity shows a different direction, in
which the low-frequency component that is below 1 kHz is
migrated up to the ultrasonic bands above 17 kHz.

Due to the reverse linearity of microphones, tones in the
speech signals are modulated into the ultrasonic carrier U(t).
A microphone will record the mixture of the inputs (i.e.,
V (t) + U(t)) with their quadratic terms as follows,

R(t) =V (t) + U(t) +Anl(V (t) + U(t))2 (1)

=V (t) + U(t) +Anl(V
2(t) + 2V (t)U(t) + U2(t)),

where Anl is the nonlinear gain. In the low-frequency band,
the nonlinearity is insignificant, so the term of V 2(t) can be

ignored. Besides, the term of U2(t) will be removed by the
low-pass filter in the microphone. Such characteristics induce
the RNL harmonics Hnl = 2V (t)U(t) as follows,

Hnl = 2
∑

AnliAicos(2πfit+ φi) · Ucos(2πfu(t)t)

=
∑

AnliAiUcos(2π(fu(t)± fi)t− φi),
(2)

where Anli is the nonlinear gain of the i-th RNL harmonic
and it is determined by fi and fu jointly. The fu(t) ± fi
implies the double sideband nonlinear modulation where the
RNL harmonics of fis are symmetrically distributed around
the ultrasonic carrier of fu(t).

Our finding enables a bi-directional acoustic nonlinearity
effect, which is promising for future acoustic applications.
This phenomenon lays the foundation for Aegis to compre-
hensively utilize multiple ultrasonic effects. Although these
RNL harmonics can map the speech signals, we notice that
audio played by a loudspeaker can also trigger reverse non-
linearity. In other words, RNL characteristics are vulnerable
to a replay attack. Fortunately, the TOF and DFS can improve
the resilience of the ultrasound-sound correlation to attacks.
Therefore, we explore the feasibility of leveraging multiple
ultrasonic effects together.

B. Simultaneous Utilization of Multiple Effects

Existing ultrasonic sensing approaches are mostly based on
a single ultrasonic effect. That is, they employ either DFS
in the continuous wave (CW) [27] or TOF in the frequency
modulated continuous wave (FMCW) [28]. Nevertheless, DFS
is also present in FMCW signals [29]. Meanwhile, the speech
signals will be coupled with the ultrasound and generate RNL
ultrasonic harmonics. This indicates that multiple ultrasonic
effects would co-exist. This phenomenon motivates us to
consider a novel sensing scheme that utilizes multiple effects
to characterize speech signals.

We conduct a pilot experiment on a SAMSUNG Galaxy S8.
The smartphone’s bottom microphone is kept horizontally 2
cm away from the user’s mouth. The user reads numbers from
‘Zero’ to ‘Nine’. The voice volume is about 66 dB, during
which the smartphone keeps playing the ultrasound of 18 kHz
at its highest volume. The intensity of ambient noise is 46.1
dB. We measure the received signals, including the line-of-
sight (LOS) and reflected signals. Their strength is 97 dB (flat
weighting). After filtering out the LOS signals, we present the
time-frequency (T-F) spectrogram in Fig. 3. Besides the DFS
of within ±150 Hz, it can be obviously observed that the low-
frequency speech signals are coupled with the ultrasound. The
high-frequency RNL harmonics are symmetrically distributed
on either side around 18 kHz within a region of ±1 kHz. After
being processed by a square-law demodulator [30], the cross-
correlation coefficients [31] between the RNL harmonics and
their corresponding speech segments are more than 0.7, while
those with the other speeches are below 0.12. Empirically, the
reverse nonlinearity occurs, if the ultrasonic intensity is above
60 dB SPL (sound pressure level).

The reverse nonlinearity is common among 18 tested mobile
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Fig. 4. System Overview. Against speech forgery, Aegis emits well-designed ultrasonic signals, which are easily accessed on mobile devices. The ultrasounds
are recorded synchronously with speeches. The ultrasonic waveform with codes and the ultrasound-sound correlation jointly enable tamper-proof detection.

phones (including Samsung, HUAWEI, OPPO, etc.), along
always with DFS and TOF features. With this insight, Aegis
could obtain abundant characteristic information merely using
ultrasound from COTS smartphones.

IV. SYSTEM OVERVIEW

We propose Aegis, an audio tamper-proof system on mobile
devices. It leverages the multiple ultrasonic effects on COTS
smartphones. The system design is illustrated in Fig. 4.

In ultrasound transmission, after modulation, encoding, and
frequency selection, Aegis emits ultrasonic signals using the
on-board speaker, carrying the ultrasonic codes. Such codes
will be inserted into the recorded audio timely. The ultrasonic
codes could be composed of device identification, time stamps,
etc, under a predetermined rule.

In the tamper-proof detection, Aegis analyzes the received
audio (including speech signals and reflected ultrasound). It
defends speech forgery from two perspectives. On the one
hand, Aegis detects the waveform distortion and decodes the
ultrasonic codes in case of audio editing. On the other hand,
Aegis matches the reflected ultrasound and speech signals
using a network against other tampering methods.

V. ULTRASONIC SIGNAL DESIGN

The design of ultrasonic signals aims at the following goals.
(i) Robustness (Security): In reality, a sophisticated adver-

sary is likely to modify the speeches as well as the ultrasonic
components to bypass Aegis. For example, CW is widely
adopted in ultrasound-based applications [32]–[36]. However,
it is vulnerable to the copy-move forgery due to its constant
ultrasonic carriers. Therefore, it is necessary to explore a
resilient modulation method for better defense. In particular,
though the adversaries could remove the high-pass ultrasonic
features using low-pass filters or lossy compression (e.g.,
MP3), the users could claim such audio is invalid.

(ii) Throughput: The ultrasonic signals should be encoded
with a high data rate and a low error rate.

(iii) Imperceptibility (Effectiveness): The selected inaudible
signals should make ultrasonic effects significant enough.
Thereby, the correlation is distinctly exhibited. These effects,
especially RNL, are sensitive to the ultrasonic frequency. It is
necessary to select appropriate bands beyond human hearing.

A. Modulation Mode: sinusoidal FMCW

An FMCW signal can simultaneously provide the DFS,
TOF, and RNL characteristics. A simple scheme is to utilize

(a) Normal Ultrasonic Carrier

f

t
(b) Copy-move

f

t

f

t
(c) Forgery of segment deletion

Deleted

Copy-move

Fig. 5. Illustration of the sinusoidal FMCW modulation of the ultrasonic
carrier and the distortions caused by the forgery of copy-move and deletion.

a linear FMCW signal. As a representative, a chirp signal
sweeps linearly over time within a specific band. However,
this scheme is vulnerable. Homologous ultrasonic carriers
(corresponding to identical speech segments) keep a fixed
frequency difference, based on which these carriers can be
mutually transformed using a square-law demodulator [30].
Hence, an adversary can easily bypass detectors based on
linear FMCW by copy-move with ultrasound re-modulation.

To resist the audio edition, we employ a sinusoidal FMCW
signal. Its frequency varies sinusoidally across a bandwidth
B with a duration τ on a frequency bias Fbias, i.e., fu =
B
2 cos(2π

1
τ t) + Fbias. Thus, we have

U(t) = Aucos(2π
∫ t

0
fudt)

= Aucos[
Bτ

2
sin(2π

t

τ
) + 2πFbiast].

(3)

Comparing the Fig. 5(a) with 5(b)&(c), the audio edition
would introduce waveform distortion in the frequency domain.

In particular, the sinusoidal FMCW modulation resists the
re-modulation of ultrasound. To edit the nonlinear FMCW,
advanced tools require a high sampling rate, more than sixfold
the signal frequencies [37]. Otherwise, they would distort the
signals. The requirement can hardly be satisfied by acoustic
sampling rates in most modern smartphones and audio com-
pression methods [27]. Therefore, we defend against the audio
edition by detecting these distortions.

B. Encoding: AM

We encode the ultrasonic signals using amplitude modula-
tion (AM). The ultrasonic codes act as an additional credible
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factor. Although frequency modulation (FM) is more popular
[14], it conflicts with our adopted sinusoidal FMCW.

In the ultrasonic codes, the lower amplitude (empirically
set as 60∼63 dB SPL, diverse among devices) is encoded as
‘0’, and the higher (at approximately 68 dB SPL) is as ‘1’.
The ultrasonic codes follow a synchronization code, which is
used for watermark location. The requirement for ultrasonic
intensity can be satisfied by mobile devices, which usually
support up to 90 dB SPL. Such a setup also meets the
human-exposure limit of below 70 dB SPL, suggested by the
International Non-Ionizing Radiation Committee [38].

C. Frequency Selection

The carrier frequency should be inaudible to humans and
capable of fully exhibiting each ultrasonic characteristic.

The intensity of RNL characteristics depends on the ultra-
sonic carrier frequency. As a representative, Fig. 7 presents
the nonlinear gains of a Samsung Galaxy S8 to different ul-
trasonic carrier frequencies and their average cross-correlation
coefficients with the corresponding speech segments. RNL
performs significantly over 18 kHz. To remain two adjacent
sidebands for the RNL characteristics (with a bandwidth of
approximately ±1 kHz), we select the band of 19∼21 kHz
(i.e., Fbias=20 kHz and B=2 kHz in Eq. 3).

The selected band is inaudible. Along with the RNL
sidebands, the ultrasonic features are distributed among
18∼22 kHz. If being below 18 kHz, RNL characteristics are
probably audible and thus degrade audio quality. If being over
22 kHz, the aliasing distortion occurs under the sampling rate
of 44.1 kHz according to the Nyquist sampling theorem. In
addition, we consider the ringing effect [16]. It results in
audible noise, due to impulses caused by discrete frequency
changes. Hence, we set a slow frequency change of τ=2 s to
avoid the ringing effect.

The selected band is also effective for TOF and DFS.
Typically, an articulatory gesture lasts 100∼700 ms [39] at
a speed of approximately ±80 cm/s [27]. The corresponding
DFS ranges up to 100 Hz at carriers of over 18 kHz. About
5,000 samples can be utilized to represent each articulatory
gesture. A wider bandwidth of 2 kHz also supports an accept-
able distance resolution in the TOF [40].

Note that the above design applies to various acoustic
sampling rates, including 44.1 kHz, 48 kHz, 96 kHz, etc.

VI. TAMPER-PROOF DETECTION

We detect the waveform distortion and ultrasonic codes
in case of the audio edition. Then, the ultrasound-sound
correlation is emphasized against the other tampering methods.

A. Distortion Detection

We detect the integrity of ultrasonic signals. Audio with no
or distorted ultrasound would be recognized to be invalid.

We utilize the slope of the curve (i.e., the derivative) to
check the sinusoidal continuity of waveforms in the frequency
domain. This method detects the discontinuity points caused
by the audio editing. In detail, we transform the temporal audio
into the T-F spectrogram via the short-time Fourier transform
(STFT). Here, the STFT is computed using a Hann window
of 85 ms, a hop length of 10 ms, and an FFT size of 4096.
Based on an adaptive threshold using the maximum entropy
method [41], the T-F spectrogram is binarized. In the binarized
sinusoidal curve, the derivative of each point should follow a
cosine pattern. On the contrary, there would exist a sudden
change in the derivatives at a discontinuity point. Accordingly,
the modified signal is distinguished from the normal ones.

In addition, microphone fingerprint [42] can be utilized.
It can detect whether the sound and ultrasound are from an
identical microphone. This method helps to avoid fake ultra-
sonic characteristics that are illegally recorded via malicious
microphones or forged.

B. Decoding

We decode the ultrasonic codes as a supplementary way
against the audio edition. The maximum entropy method [41]
is used to obtain an adaptive threshold to distinguish ‘0’ with
low ultrasonic intensities and ‘1’ with high ones. Benefit-
ing from advanced ultrasonic communication techniques, the
throughput of the ultrasonic codes is high up to 1 kbps.



The above means jointly defend against the audio edition.
In case adversaries conduct replay, imposter, or synthetic at-
tacks, we correlate the ultrasonic characteristics with speeches
against forgery in the following.

C. Ultrasonic Feature Demodulation

When leveraging a learning-based method for audio-related
applications, an intuitive and simple scheme is to directly input
the received audio (mixing ultrasonic and speech signals) into
the network. However, this scheme underutilizes these ultra-
sonic effects, especially in the frequency domain. Separating
the mixed temporal audio into speech segments and ultrasonic
signals and transforming them into T-F spectrograms [35]
benefits the network in extracting the correlation. Before the
STFT, we extract the ultrasonic features from the mixed audio
using a square-law demodulator.

A square-law demodulator can migrate modulated signals
from high-frequency carriers to low-frequency bands [27],
[30]. It produces an output proportional to the square of the
input, and then removes high-frequency components using a
low-pass filter (LPF), with an example illustrated in Fig. 6(b).
To be specific, we separate the ultrasonic signal using a
high-pass filter (HPF), of which the cut-off frequency is 18
kHz. The modulated signal is denoted as U(t) · F (t), where
F (t) is the characteristic signal modulated on the ultrasonic
carrier U(t) = Ucos(2π

∫ t

0
fudt). Through a squarer (i.e.,

multiplying U(t) · F (t) by itself), we obtain

[U(t) · F (t)]2 =
1

2
F 2(t) +

1

2
U2F 2(t)cos(4π

∫ t

0
fudt). (4)

An LPF with a cut-off frequency of 2 kHz is utilized to filter
out the high-frequency components (i.e., the second term in
Eq. 4). Therefore, we extract the characteristic signals F 2(t)
(composed of the DFS, TOF, and RNL characteristics). Here,
we cannot directly distinguish or separate each ultrasonic
characteristic from the others due to the complexity of an
articulatory gesture [43], especially from the square of the
mixed characteristic signals, i.e., F 2(t). Therefore, we propose
a learning-based method for correlating the characteristic
signals with the speech signals in case of forgery.

D. Forgery Detection Network

We leverage a multi-modal framework to emphasize the
correlation between the ultrasonic characteristics and speech
signals. Thus, it facilitates detecting audio forgery.

1) Network Input: We pre-process the speech signals V (t)
and the characteristic signals F 2(t) via three steps. (1) Filter:
We maintain the audible bands below 2 kHz using an LPF.
Such a band covers the fundamental band of human voice
[27], [35]. (2) Segment: We locate cutting points based on
the spectral entropy [44] of speech signals. In particular, the
speech signals and the characteristic signals share the same
cutting points due to the natural alignment. Accordingly, we
divide the two signals, and each pair of segments corresponds
to a single word. (3) STFT: To utilize the audio pattern in both
the time and frequency domains, we transform the two signals
into T-F spectrograms using the STFT with the identical
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acteristics, which are distributed among different bands (150 Hz vs. 1 kHz).

parameters in Sec. VI-A. We combine the two processed T-F
spectrograms as a two-channel input.

2) Network Design: RNL and DFS/TOF characteristics are
distributed in different bands, in which the former ranges
within 1 kHz and the latter is mainly below 150 Hz. If di-
rectly combining the loss of all characteristics with significant
frequency difference for joint optimization, it would be hard
to train the network with our limited dataset, not to mention
the required excessive computation resources. To well balance
the computational cost and performance, we leverage a parallel
training mechanism. The network structure is shown in Fig. 8.

In each parallel subnetwork, we utilize a ResNet18 [45].
The binary cross entropy loss function is adopted as follows,

BCE = − 1

N

N∑
i

yi ·log(p(yi))+(1−yi) ·log(1−p(yi)) (5)

where yi is the binary index of the sample i, in which
yi = 1 if the sample i is positive, otherwise yi = 0, and
p(yi) is the output prediction. This training mechanism is
resilient against adversaries who tamper with one or several
characteristics independently. An AND gate combines the
predictive values of the two subnetworks with the same weight,
of which the samples predicted to be both positive (authentic)
are recognized to be forgery-free.

Combining the above efforts together, Aegis realizes a
‘seamless integration’ tamper-proof detection on COTS mobile
devices, especially in real-time scenes.

VII. EVALUATION

We implement and evaluate Aegis with COTS smartphones.
All experiments follow the approved IRB protocol. We will
release our datasets to facilitate the ultrasonic sensing research
after necessary data desensitization.

A. Experimental Setup

Dataset. To train and evaluate Aegis, we construct the
first multi-effect ultrasound-speech dataset. We recruit 28
volunteers (14 males and 14 females, aged from 20 to 50).
Each volunteer is asked to read two texts: the most common
3000 words [46] and 200 sentences in the TIMIT speech
corpus [47]. Data are collected from five smartphones (SAM-
SUNG Galaxy S8, Mi 10, HUAWEI P20 Pro, iQOO 3, and
OnePlus 9). The volunteers hold the smartphone horizontally
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Fig. 9. Overall performance against forgery.

or in the posture of the phone call. Their voice volumes are
at about 66 dB in a quiet room with ambient noise of about
45.7 dB. The bottom microphone keeps 2∼4 cm away from
volunteers’ mouths. The smartphones are sampled at 44.1 kHz.

Attack means. Guided by Sec. II-B, we design the follow-
ing attack means to cover the most of possible forgery. In the
audible band, we consider two means:
• L̃1 Cope-move: We splice or delete segments.
• L̃2 Audio Deepfake: We consider the top two popular

learning-based generation techniques: TTS represented by
SV2TTS [24] and VC represented by AutoVC [25].
According to the knowledge about our system, adversaries

could take the following actions in the ultrasonic band.
• H̃1 Non-treatment: Adversaries merely tamper with the

audible segments and ignore or remove the ultrasonic band.
• H̃2 Re-modulation: We consider re-modulation attacks using

two advanced demodulators: a square-law demodulator [30]
and the three wave mixing (TWM) [37].

• H̃3 Replay: Adversaries record and replay the speeches.
• H̃4 Impostor: Adversaries imitate the victim’s articulatory

gestures to obtain the corresponding ultrasonic segments.
We consider two cases, in which some of the speeches from
the impostor are within or beyond the training dataset.

• H̃5 Generation: Adversaries directly generate ultrasound by
learning-based techniques. Here we use the GAN [26].

• H̃3+4 Replay+Impostor: The adversaries may combine mul-
tiple means. Here we consider the most dangerous combined
forgery as a representative, i.e., replaying for RNL and
imitating for DFS and TOF simultaneously.
Combining the above means, we obtain 12 (=2×6) types of

negative samples. We denote L̃iHj as the tampering method
that adversaries conduct. For example, L̃2H5 means that
adversaries directly generate the whole audio including both
the audible speech and the ultrasound by AI techniques.

Network Implementation. We implement the detection
network using PyTorch. The network contains a total of 33.6
M parameters. The batch size is 64. The model is trained in
a server with Intel(R) Xeon(R) Silver 4210R CPU@2.40GHz
and two Nvidia GeForce RTX 3090. For training the network,
we use Adam optimizer with a 1e-04 initial learning rate,
dropping by 25% every 5 epochs for a total of 40 epochs.
The collected ultrasound-speech data are randomly divided
into two parts: 80% for training and 20% for testing.

Metrics. We evaluate the tamper-proof performance of
Aegis under three frequently used metrics, i.e., accuracy,
precision, and recall. The accuracy is defined as the ratio of
correctly-predicted samples to the total samples. The precision
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and recall are the ratio of correctly-predicted positive samples
(i.e., authentic audio segments) to the total positive samples
and the total samples to be predicted as positive ones respec-
tively. To describe the capacity of the ultrasonic codes, we use
the metrics of bits per second (bps) and bit error rate (BER).

B. Overall Performance

1) Effectiveness against forgery: We first evaluate the ef-
fectiveness of Aegis defending against various audio forgery
methods. To demonstrate the threat from the attack means
in Sec. VII-A, we mix the modified audio (i.e., the negative
samples) with the original ones. The other 20 volunteers are
asked to distinguish these audios with a human-predicting
accuracy of below 40%. On the contrary, Aegis presents better
non-repudiation in detecting forgery. As shown in Fig. 9, the
average accuracy reaches up to 99.5% on average.

In the attack of H̃4 Impostor, Aegis can accurately detect
modified audio, no matter whether the impostors are included
in the training dataset. Among the total 12 impostors, the
accuracy is 99.82% against the six seen impostors and it is
99.78% against the six unseen ones. Aegis is able to work
effectively without any knowledge about the adversary.

In the attack of H̃5 Generation, Aegis can resist generative
attacks with an accuracy of 99.81%. Although advanced
attacks can generate two-dimensional images of the mouth
movement according to speeches [48], they can hardly obtain
the corresponding TOF/DFS characteristics. Overviews, the
TOF/DFS-based authentication systems [36], [40] would be
vulnerable. Besides, the parameters (the acoustic intensity and
frequency, which would determine the TOF/DFS character-
istics) are time-varying in our proposed ultrasonic signals.
This measure increases the difficulty and cost of GAN-based
forgery in data collection and training.

Among these tampering methods, audio signals are most
vulnerable to ˜LiH3+4. Nevertheless, Aegis still maintains an
accuracy of 98.9%. Few modified segments could bypass
Aegis with a high recall of 99.1%, while almost all authentic
audios are under effective protection with a high precision
of 99.3%, as shown in Fig. 11(a). These results indicate that
Aegis resists various forgery techniques.

2) Throughput of ultrasonic codes: As shown in Fig. 10,
the capacity of the ultrasonic codes reaches high up to 1
kbps. BERs maintains below 1%, which is acceptable in
watermark [5]–[7]. The accuracy always exceeds 98%. In our
experiments, we transmit the ultrasonic codes at 200 bps by
default. The above results imply that Aegis could work under
different requirements of capability and error rates.



TABLE I
PERFORMANCE OF AEGIS AGAINST VARIOUS UNSEEN ATTACK METHODS

IN AUDIO DEEPFAKE

Train

Accuracy Test
SV2TTS [24] AutoVC [25] [49] [50]

No Generated 99.0% 99.2% 99.0% 99.6%

SV2TTS [24] 99.2% 99.2% 99.0% 99.6%
AutoVC [25] 99.0% 99.6% 98.8% 99.4%

SV2TTS+AutoVC 99.2% 99.4% 99.4% 99.6%

3) Ablation study: In an ablation study, the accuracy is
92.8% if we leverage a network trained on the samples merely
with DFS/TOF features. The accuracy will be 96.8% if on the
samples only with RNL features (except the cases of defending
against replay attacks because the RNL is vulnerable with
a low accuracy of 28.8%). Moreover, the accuracy drops to
merely 47.1% if we use a ResNet18 [45] trained on speech-
only signals without ultrasound. In the ablation of network
design, the average accuracy drops to 92.8%, demonstrating
the necessity of the parallel training mechanism. The above
results show the effectiveness of the Aegis design.

C. Proactivity against New Attacks

We evaluate the proactivity of Aegis, that is, the potential
defending effectiveness against unseen and future attacks.

Various Audio Deepfake techniques keep emerging. Here,
we conduct two other Audio Deepfake (with open-source
codes or datasets) [49], [50]. The results are listed in Tab. I.
Obviously, Aegis keeps a high detection accuracy even under
the attack of unseen Audio Deepfake techniques. In particular,
we train a model on a dataset excluding any AI-generated
speeches (i.e., trained merely on L̃1 Copy-move). Even under
such unfavorable conditions, Aegis still holds the ability of a
proactive defense and keeps its accuracy as 99.2% (See the
second row in Tab. I). On the other hand, if the negative
samples in the training datasets consist of merely under L̃2,
Aegis still exhibits a similar performance of 99.2% against
the forgery from L̃1 Copy-move. In comparison, the tradi-
tional anti Audio Deepfake method [51] obtains 24.1%∼96.6%
against unseen attacks. Hence, Aegis is able to resist unseen
or future attacks proactively.

D. Robustness Evaluation

1) Text-free Performance: Aegis is independent of words
and texts. We select 20% words as the testing set and the
rest as the training set. As shown in Fig. 11(b), the accuracy
maintains 98.9% on new words against the most dangerous
tampering method ˜LiH3+4. The performance on new words
degrades very slightly compared to the results in Fig. 11(a),
with a drop of below 1%.

Furthermore, we consider the generalization of Aegis to
other languages. Fortunately, the relationship between voices
and articulatory gestures is similar across different lan-
guages [35], [43]. Thus, the DFS and TOF are independent
of languages. Moreover, the RNL effect is language-free [17].
Thus, Aegis can be applied to any language if being trained on

80%

85%

90%

95%

100%

A1 A2

Accuracy
Precision
Recall

𝐴ଵ𝑈ଷାସ෫ 𝐴ଶ𝑈ଷାସ෫
80%

85%

90%

95%

100%

A1 A2

Accuracy
Precision
Recall

𝐴ଵ𝑈ଷାସ෫ 𝐴ଶ𝑈ଷାସ෫

(a) On known words

80%

85%

90%

95%

100%

A1 A2

Accuracy
Precision
Recall

80%

85%

90%

95%

100%

A1 A2

Accuracy
Precision
Recall

𝐴ଵ𝑈ଷାସ෫ 𝐴ଶ𝑈ଷାସ෫

80%

85%

90%

95%

100%

A1 A2

Accuracy
Precision
Recall

ଵ𝑈ଷL ାସ෫ 𝐴ଶ𝑈ଷାସ෫

(b) On new words

Fig. 11. Performance comparison between known and new words.

the corresponding datasets. An experiment on Chinese Man-
darin from three users presents an accuracy of 98.8% against
forgery, which verifies its applicability among languages.

2) Impact of Acoustic Sampling Rate: Aegis can support
a wide range of sampling rates, including 96kHz, 48 kHz,
and 44.1 kHz. Experimentally, Aegis achieves an average
accuracy of 99.6%, 99.2%, and 99.5%, respectively. There is
no significant difference in terms of detection accuracy among
devices with different sampling rates.

Fig. 12. Ambient noise impact.

3) Impact of Environmental Noise: We evaluate Aegis in
four common scenes, including a seminar room, an office, a
crowded cafe, and a street side. The ambient noises measure
approximately 56.1 dB, 50.1 dB, 63.9 dB, and 71.2 dB respec-
tively. Aegis is robust with an average accuracy of over 98.8%.
Even on the noisiest scene, i.e., the street side, Aegis keeps an
accuracy of 96.2%. To further test its anti-noise performance,
we manually add noises up to 75 dB. As shown in Fig. 12,
Aegis maintains an accuracy of approximately 95% under the
noise level of 75 dB, considering that 76 dB is the upper bound
of community noise by current regulations [52]. Aegis is able
to perform robustly in various realistic scenarios. In the future,
we can adopt noise removal techniques (e.g., Wiener filtering
[53] and speech enhancement [27], [35]) to enable a higher
detection accuracy in extremely noisy environments.

E. Impact of Position

1) Holding Styles: We consider two common holding styles
when users speak to smartphones, i.e., the ‘Towards Mic’

TABLE II
IMPACT OF HOLDING STYLES.

Train

Accuracy Test
Towards Mic Phone Call Mixture

Towards Mic 99.3% 71.6% 85.5%
Phone Call 72.9% 99.3% 85.4%

Mixture 96.8% 97.5% 97.2
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Fig. 13. Impact of distance.

and ‘Phone Call’ modes. Though it performs poorly when
trained on data from merely one set but tested on the data
from the other, Aegis maintains a high accuracy of over 97%
when trained on both sets as shown in Tab. II. In practice,
we can recognize the holding style by leveraging proximity
sensors and motion sensors, which are widely embedded in
both Android and iOS smartphones, and thus maintain a
performance of over 99%.

2) Distance Between Mouth and Device: To be more gen-
eral, we evaluate Aegis under different mouth-phone distances
in the two holding styles. In our training data, the distance
from the mouth to the smartphone’s microphone ranges from 2
cm to 4 cm. Figure 13 demonstrates its robustness to distance
variations. Although the ultrasonic signals will attenuate as
the distance increases, the accuracy keeps over 98% at 6 cm,
97% at 10 cm, and 96% at 14 cm in the ‘Towards Mic’
mode. It also achieves an acceptable sensing distance of 4
cm with an accuracy of 96.4% in the ‘Phone Call’ mode in
which the users’ mouths prefer to approach their smartphones
yet the microphones’ reception directions are not pointing
at the mouths. Aegis performs consistently and reliably with
effective coverage.

3) Angle of Mouth toward Device: We consider the cases
where the users do not always keep the standard ‘Towards
Mic’ position, where the microphones’ reception directions
do not directly face the mouths, or the smartphones are
placed non-horizontally. We vary the angle between the mouth
and the smartphone’s microphone at each distance, with the
results shown in Fig. 14. In an opening angle of ±60◦,
Aegis performs robustly with an accuracy of over 93% within
10 cm and of over 98% within 8 cm. In addition, when
the smartphone is not horizontal, Aegis maintains a high
accuracy of over 97.8%.Therefore, the users can act in their
habitual way when operating Aegis with satisfactory protection
effectiveness. Note that we still suggest that users approach
their smartphones for better protection in practice.

4) Motion Interference: Users’ body movements would
distort the DFS characteristics and cover up the ones related
to speeches. We test Aegis when the users are speaking during
walking, running, and driving. Aegis achieves an acceptable
accuracy of 98.6%, 97.4%, and 98.7% respectively. The results
demonstrate the motion robustness of Aegis.

F. Perceptual Quality Study

We recruit 26 volunteers (13 males and 13 females, aged
18 to 55) to perform a subjective study of the user experience.
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Following the ITU BS.1387 procedure [54], we ask the vol-
unteers to rate audio under Aegis for the objective difference
grade (ODG) on a 5-point scale ranging from -4 to 0 (where
a high score refers to little influence on audio). The average
ODG is -0.13, where an ODG of over -1 means the perceptual
quality degradation is imperceptible [10]. The users report
hearing no additional acoustics during use. The results imply
that Aegis is imperceptible, barely affecting the audio quality.

VIII. RELATED WORK

Ultrasound has been widely exploited for sensing due to
its availability on COTS mobile devices, e.g., smartphones.
Ultrasonic schemes are able to reach the sensing resolution
of the millimeter scale [32], [33]. Thus, the movement of
nearby users’ vocal tract [39] can be characterized using
ultrasound for lip reading [34], speech enhancement [27], [35],
and biometric authentication [36], [40].

Existing ultrasonic sensing methods focus merely on one of
TOF/DFS characteristics [36], [40]. Instead, we combine the
two features with acoustic reverse nonlinearity (different from
common senses [16]–[22], in which ultrasound is converted
into audible sound). Exploiting multiple effects presents great
potential for speech forgery detection, and we believe reverse
nonlinearity will facilitate acoustic applications.

IX. CONCLUSION

To resist speech forgery, especially in real-time voice appli-
cations, we realize a novel audio tamper-proof system, named
Aegis. We are the first to probe the acoustic reverse nonlinear-
ity effect that converts audible signals into ultrasonic bands,
which has not been explored in the literature. We establish the
ultrasound-sound correlation by exploiting multiple acoustic
effects. Accordingly, Aegis enables effective detection against
various tampering methods.
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